Reconstruction of Long-Lived Particles (LLPs) in IDEA Tracker at FCC-ee

IDEA Geometry & Parameters

Juliette Alimena, Matteo Presilla & Sofia Giappichini

Obedience Munkombwe | 18. September, 2025

**ETP + Institut für experimentelle Teilchenphysikombwe – Reco of LLPs in IDEA Tracker at FCC-ee

CONTENTS

- **1. IDEA Detector**
- 2. IDEA Detector Tracking System

The Innovative Detector for E+e- Accelerator (IDEA) - OVERVIEW Muon System Solenoid Dual-readout Fiber HCAL Dual-readout Crystal ECAL

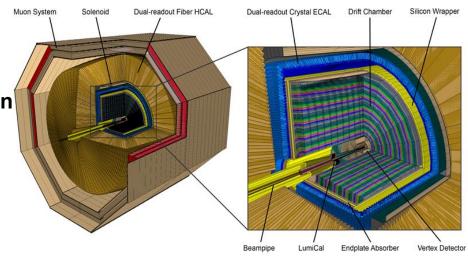
Vertex detector of monolithic active pixel sensors

MAPS → Min material budget, very small pixels → O(μm) spatial resolution

Drift chamber with cluster counting

- Ultra-light, up to 112 track hits with σxy ≈ 100 μm
- Cluster counting for PID

Silicon wrapper for precise last track hit


→ sharpens high-p_t momentum & polar-angle resolution

Dual readout crystal ECAL

- DR: Measures EM and hadr. shower components
- · Highly-segmented

Dual readout fibre HCAL complementing ECAL

Muon detectors ; ≥ 3 layers of μ-RWELL

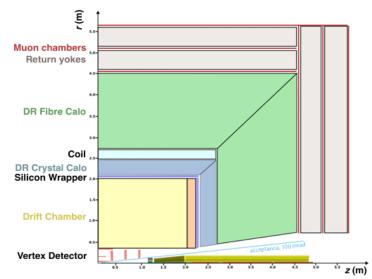


Figure 3: Overview of the IDEA detector layout

The IDEA Detector – Tracking System

Main tracking subsystems:

- 1. Silicon pixel vertex detector,
- **Central Drift Chamber** (Ultra-light),
- Silicon wrapper (around the drift chamber)

Global geometry:

- **Beam pipe radius:** ≈ 1.5 cm.
 - → 1st vertex layer very close to IP → excellent impact-parameter resolution
- **Vertex detector**: 1.37–3.56 cm (inner barrels) and 13–31.5 cm (outer barrels).
- **Drift chamber**: radius 35-200 cm, |z| < 200 cm.
- **Silicon wrapper**: barrel layers at $r \approx 2.04-2.08$ m and disks up to $|z| \approx 2.32$ m, covering $|\cos\theta| \lesssim 0.989$.
 - ✓ Overall tracker material → Very small thanks to He gas and thin silicon → minimizes multiple scattering

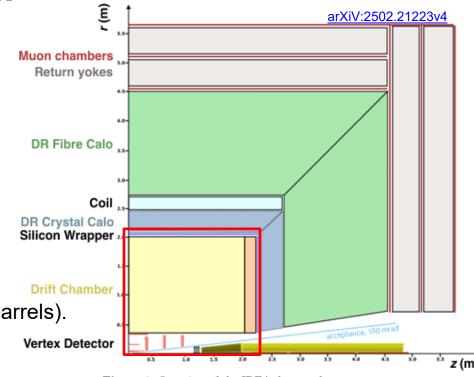
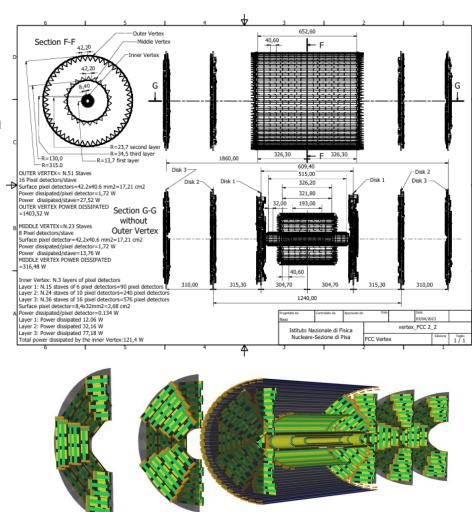


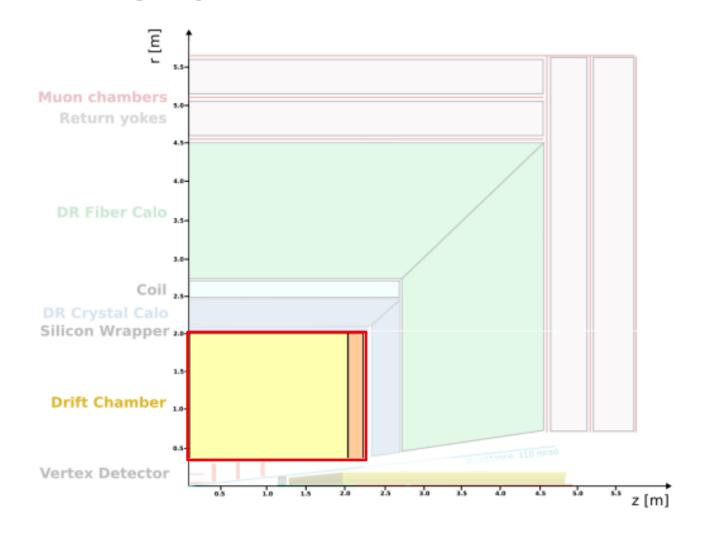
Figure 3: Overview of the IDEA detector layout.

The IDEA Tracking System – Vertex Detector

The IDEA Tracking System - Vertex Detector

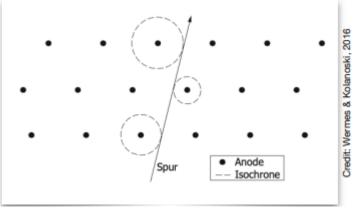

Technology: 50 μm-thick **Monolithic Active Pixel Sensors (MAPS)** → thin and low power.

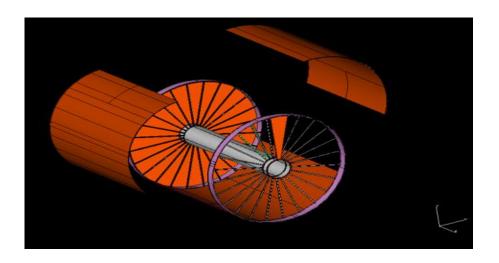
Inner vertex (baseline, ARCADIA):

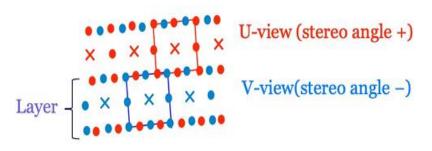

- 3-barrel layers at $r = 13.7, 23.7, 34-35.6 \text{ mm}, |\cos\theta| < 0.99.$
 - → Dense hit coverage very close to IP → µm-level impact-parameter resolution
- Pixel pitch ≈ 25×25 μm², single-hit resolution ≈ 3 μm assumed.
 - → needed to reach few-µm d₀ and resolve short-lived decays
- Per layer material ≈ 0.25% X₀, total vertex ~1% X₀.
- → ultra-light, curved-sensor option (ALICE ITS3-like)

Outer vertex:

- Pixel size ≈ 150×50 µm² (ATLASPix3-like).
- 2-barrel layers at ≈ 130 mm and 315 mm, plus 3 disks per side up to z ≈ 93 cm.
 - → Extend precise tracking into the forward region → better angular resolution and forward secondary vertices


The IDEA Tracking System – The Central Drift Chamber


The IDEA Tracking System – The Central Drift Chamber


Working Principle

- Charged particle crosses the gas volume → it ionizes the gas, creating electrons and positive ions along its path.
- Electric field inside each drift cell makes the electrons drift towards the sense wire.

- The drift time is measured by the electronics → distance of closest approach of the track to the wire (drift radius).
- Each sense wire gives one **space point** → reconstruct a full **3D track** and its curvature in the magnetic field → momentum.

8/18

The IDEA Tracking System – The Central Drift Chamber

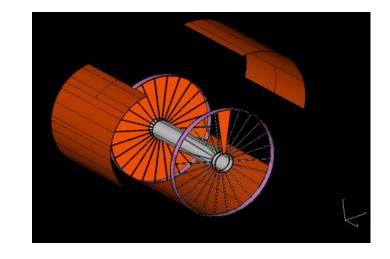
Geometry: Cylindrical single-volume, R_{in} = 35cm, R_{out} = 200cm, L = 400cm and angular coverage = $\theta \approx 13^{\circ}$

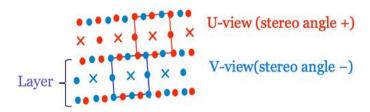
- Large V → LLPs decay inside the DCH → displaced vertices in the gas volume
- Large R → big lever arm → curvature measurement
- Long L → good coverage for forward tracks (boosted objects and LLPs).

Layers: 14 super-layers × 8 layers = 112 layers → ~112 hits/track

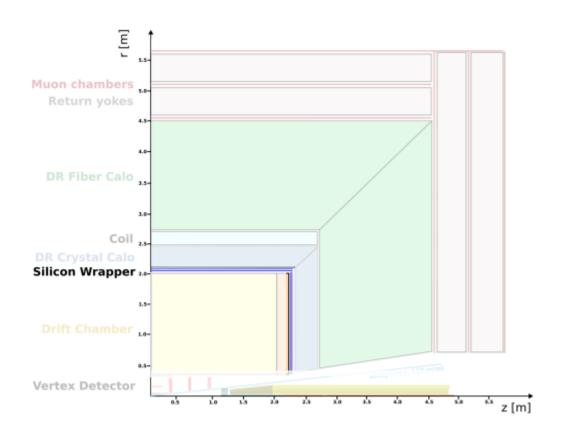
More hits → better curvature fit and pattern recognition, especially for displaced tracks

Gas: 90% He + 10% i-C₄H₁₀.


He: extremely low multiple scattering, i-C₄H₁₀ = fast, good for quenching

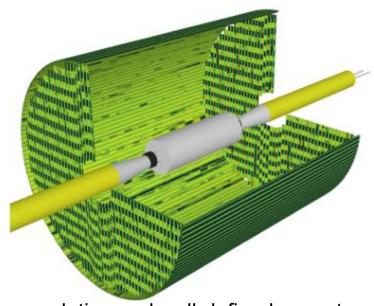

Drift cells: size 12–14.5 mm ~ drift time of about 400 ns ~ drift velocity of 2.2cm/µs

- Short drift distances → spatial resolution ≤ 110 μm
- Excellent two-track separation (~2 mm) → close tracks from displaced vertices


Wire ratio: field:sense = 5:1

more field wires → more uniform E-field → better timing & position

The IDEA Tracking System – Silicon wrapper



The IDEA Tracking System – Silicon wrapper

Surrounds the drift chamber (r < 2 m, $|z| \le 2.25$ m), total area >100 m².

Current implementation in DD4hep

- 2-barrel layers: at r ≈ 2.04 m and 2.08 m, |z| < 2.4 m.
- 2 disks per side: at $z \approx \pm 2.30 2.32$ m, with radii 0.35-2.04 m.
- Coverage: $|\cos\theta| < \sim 0.989$, so almost full solid angle.
- Spatial resolution: ≈ O(10 µm) in both coordinates
 - \rightarrow Precise polar angle & outer radius measurement \rightarrow tight high-p_t momentum resolution and well-defined acceptance

Summary & Outlook

In the context of LLPs study:

Lifetime range	Where it decays	Signature & why tracker helps
Short (≲ few mm)	Inside Vertex detector	Displaced vertices + large impact parameters; measured with μm precision from the \mbox{MAPS} vertex layers
Intermediate (cm-1m)	DCH	Multi-hit displaced vertices in low-material gas; many hits/track → great reconstruction
Long (up to ≈ 2 m)	Near / inside silicon wrapper	Non-pointing, possibly delayed tracks; outer Si hit and timing help distinguish from prompt background

Thank You!

Questions & Feedbacks are welcome.

13/18

BACKUP