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Problem & Motivation
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HEP imposes strict requirements on ML models

Must learn complex physical relations with high
precision

Need data efficiency and fast inference/training
Standard ML models ignore the structure and
symmetries of HEP data

Particle interactions follow QFT and must respect
fundamental symmetries

Especially Lorentz symmetry from special relativity
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Limitations of current tools

Tool Handles variable inputs? Respects Lorentz Data
Symmmetry? Efficiency

BDT X No X No Low
MLP X No ¥ No Medium
CNN Yes (as images) ¥ No Medium
Transformer Yes X No High
LGATr Yes Yes High
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How does Lorentz-Equivariant
Geometric Algebra
Transformers (LGATr) work?
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General Overview
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GATr was originally Strong performance Scalable
developed for E(3) on diverse problems to thousands of tokens

arXiv:2305.18415
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Image source: Chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://indico.kit.edu/event/4479/contributions/17664/attachments/7962/12858/Iga tr-crc.pdf

7 11/12/2025 Anuar Sifuentes Name ETP — Institut fir Experimentelle Teilchenphysik ﬂ(IT



Core Ildea 1 - Geometric Algebra (GA)

Also called Clifford algebra: extends a vector space (e.g., R3or
Minkowski space) with multivectors (scalars, vectors, bivectors,

etc.).

Built on the geometric product = inner product + generalized

cross/outer product.

Spacetime GA G, 3is 16-dimensional:

-grade 0: scalars (type info),
-grade 1: four-vectors (p*,(

-higher grades: antisymmetric tensors — richer representations.

Why L-GATr uses GA

GA enables equivariance: GATr — E(3), L-GATr — Lorentz

transformations.

Each particle = a GA token combining type (scalar channel) +

four-momentum (grade-1).

Lets the network operate directly on geometric objects, not

arbitrary feature vectors.
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Core Ildea 2 - Lorentz equivariance in Action

Lorentz Equivariance
e Multivector tokens (grades 0—4) - each grade transforms
consistently under Lorentz transformations
* Linear layers, attention, LayerNorm, and nonlinearities are
adapted for multivectors while preserving equivariance
_|_ -Per-grade linear mixing (optional ys term)
A E S O 1 3 . -Minkowski inner-product attention
j L]

-Scalar-gated GELU + geometric product

p"\ S i"\ Partial Symmetry Breaking
* .:E — * :,E LHC beam & detector break full Lorentz symmetry - fully

equivariant networks may miss physical asymmetries.
¢ Reference multivectors allow controlled symmetry breaking:
-Reduce symmetry to SO(3), SO(2), etc.
depending on beam/detector geometry
-Treated as architectural constants, not input data
-Network can selectively use or ignore them
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Core Idea 3: Transformers

Overall structure:
-Stacked Blocks: Block = Attention + MLP
*Full network: L-GATr(x) = Linear — Block - ... - Block — Linear

AttentionBlock:

«Captures relations between all particle tokens

Linear projections — Minkowski inner-product attention —
output + residual

*Weighs particles context-dependently
*Lorentz-equivariant

*MLPBIlock: Linear — Gated GELU — Linear — Geometric
Product — + residual

*Key points:

*Tokens = multivectors + scalars

*Residuals + LayerNorm stabilize training

*Geometric product + multivector layers — expressivity for 4-
momenta

Purpose:
*Capture complex particle interactions beyond standard NNs
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Input and output data Attention blocks
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dimensions efficiently
T T i
: | :
N : | : I : I :
= (EQUIR [E=RRA AN [Fenl .o : tqui 1| 1 Geom ! Eq 5
ML layer = = b ) = s s 1 laver ok | & L:~‘> S iy
near| i | 1 | linear | 1 attn y [ tinear | N s | | linear | .1 prod. | neq e
P @ [ A | £ 1 norm K I 3
! I | I | | ' I
) | ) () ) ) i ) ) n ; e o)
Linear layers
between GA Geometric attention Geometric product
representations with generalizes scaled dot- allow for construction
equivariance constraint | product attention of new geometric types

Image source: Chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://indico.kit.edu/event/4
479/contributions/17664/attachments/7962/12858/Igatr-crc.pdf




Putting all together (simplified)

The self-attention
Step asks:

‘Which particles are
physically related?’

Self-attention

Input: Geometric
A small neural network

ST | refines the representations
(e.g., combines prong info)."

Raw 4-Momenta Algebra

We insert into Embedding
the Transformer Embed each patrticle
Low-level variables as a multivector in G, 3

Scalars, vectors
snd bivectors

Physics-Aware
Prediction

Signal/background score.
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Why does this matter for FCCee and
forB,— t7t ?
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Advantages for FCCee & B.— 71

Calibration,
clustering etc Simulation-based inference: Strong Performance on:
MadMi MEM et . .
4 achinen M= e Amplitude regression
@ > .m,’)l Recon- Reconstr. Event Generatlve Networks
tructi rticl lecti .
Nature Detector - P — 7 Jet Tagglng
Inference
Sl | Shower + - Data efficiency: Learns from fewer B; — 1t
Scattferlng MC hadron. Detgctor Reco_n— Recqnstr. Eveqt Discoveries &
Wil amplitudes sampler sim sim struction particles selection measurements events
Theory
4 s 4 We can use full 4-momentum structure
Amplitude Neural \ T /‘ (Get tagging) More aoolications 1 N€ Transformer’s attention lets LGATT to look
regression importance Anomaly detection for patterns
sampling  {Generative networks dnfeldng  Essential for rare-decay discrimination

Image source: Chrome- No need to define high-level variables

extension://lefaidnbmnnnibpcajpcglclefindmkaj/https://indico.kit.edu/event/4
479/contributions/17664/attachments/7962/12858/Igatr-crc.pdf
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Summary + Practical Next Steps

Summary

« LGATr is a relatively new (23 May 2024) and promising ML architechture for HEP

« ltis Lorentz equivariant and it has the possibility to break symmetries if necessary

« The architechture uses Geometric Algebra (GA), greatly improving expressivity

 Because GA embeds the symmetries in its multiplication rules, it becomes Lorentz-equivariant

« This ML method is a Transformer, taking advantage of the Attention Mechanism

« LGATr has strong performance on Amplitude regression, Generative Networks and Jet Tagging

Practical Next Steps

* Understand the code behind LGATr

» Of course test this ML Architecture on B;— t*t

« Try different combinations of low-level variables
» Outperform Marc’s Groeninger benchmark
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Thank you for
your attention!
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Extra 1: Amplitude Regression
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Figure 3: Amplitude surrogates. Left: Surrogate error for processes of increasing particle multiplicity and
complexity, training on the full dataset of 4 - 10° samples. L-GATr outperforms the baselines, especially at more
complex processes. Right: Surrogate error as a function of the training dataset size.

Image source: Lorentz-Equivariant Geometric Algebra Transformers for High-Energy Physics.
https://arxiv.org/abs/2405.14806
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Extra 2: Generative Networks
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Figure 4: Generative modelling: Marginal distributions of reconstructed particles in the pp — 1t + 4 jets Number of training samples

process. We compare the ground-truth distribution (black ) to three generative models: continuous normalizing — Fieure S: Generative modelling: negative log likelihood on the test set (lower is better). Left: For different

flows based on a Transformer, MLP, or our L-GATr network. The three marginals shown represent kinematic ~ processes. Right: As a function of the training dataset size. We show the mean and standard deviation of three
features that are known to be challenging The L-GAT: flow describes them most accurately random seeds. The L-GATr conditional flow matching (CFM) model outperforms all other CFM models as well
' ' as the autoregressive transformer JetGPT, across all processes and all training set sizes.

Image source: Lorentz-Equivariant Geometric Algebra Transformers for High-Energy Physics.
https://arxiv.org/abs/2405.14806
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Extra 3: Jet Tagging

Model Accuracy AUC 1/eg (es = 0.5) 1/ep (es = 0.3)
TopoDNN [49] 0.916 0.972 - 295
LoLa [16] 0.929 0.980 — 722
P-CNN [1] 0.930 0.9803 201 759
N -subjettiness [62] 0.929 0.981 — 867
PEN [51] 0.932 0.9819 247 888
TreeNiN [58] 0.933 0.982 — 1025
ParticleNet [64] 0.940 0.9858 397 1615
ParT [65] 0.940 0.9858 413 1602
LorentzNet* [42] 0.942 0.9868 498 2195
CGENN* [68] 0.942 0.9869 500 2172
PELICAN* [10] 0.9426 0.9870 - 2250
L-GATr (ours)* 0.9423 0.9870 540 2240

Table 1: Top tagging. We compare accuracy, area under the ROC curve (AUC), and inverse background
acceptance rate 1/ep at two different signal acceptance rates (or recall) es € (0.3,0.5) for the top tagging
dataset from Kasieczka et al. [50]. Lorentz-equivariant methods are indicated with an asterisk™; the best results
for each metric are in bold. For L-GATr, we show the mean and standard deviation of five random seeds.

Baseline results are taken from the literature.

Image source: Lorentz-Equivariant Geometric Algebra Transformers for High-Energy Physics.

https://arxiv.org/abs/2405.14806
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Extra 4: Marc Groeninger’s work

All Available Features
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Figure 4.2.: ROC curve of the first L-GATr model.

Only pion information

1.0

Background rejection

o
N

O%

0 02 04 06 0.8

O
@

o
ik

O
+

—— ROC (area = 0.886)
----- 50/50

Signal efficiency

Image source: Marc Groeninger’s Bachelor Thesis. https://www.overleaf.com/project/681bc1aa75868d894e4a0c78
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