Workshop on Standard Model Effective Theory

Single Top in the SMEFT

Rhea Moutafis July 11, 2019

OVERVIEW

Introduction **SMEFT** Basics Relevant Operators **Correlated Uncertainties** Results Conclusion

INTRODUCTION

INTRODUCTION

- at LHC: production of new particles or imprints via interferences & virtual effects
- single top especially sensitive to electroweak interactions
- subset of top sector
 → possibility to focus on the technical side
- goal: constrain 7 main dim-6 operators concerning single top with *SFitter*

SMEFT BASICS

SMEFT BASICS

• effects of new heavy BSM particles:

$$\mathscr{L}_{SMEFT} = \mathscr{L}_{SM} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \, \mathscr{O}_i^{(6)} + \dots,$$

• cross sections:

$$\sigma_{SMEFT} = \sigma_{SM} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \sigma_i + \sum_{i,j}^{N_{d6}} \frac{c_i c_j}{\Lambda^4} \tilde{\sigma}_{ij} + \dots,$$

SMEFT BASICS

$$\sigma_{u\bar{d}\to t\bar{b}} = \left(1 + \frac{2c_{\varphi q}^3 v^2}{\Lambda^2}\right) \frac{g^4(s - m_t^2)^2(2s + m_t^2)}{384\pi s^2(s - m_W^2)^2}$$

+
$$c_{tW} \frac{g^2 m_t m_W (s - m_t^2)^2}{8\sqrt{2}\pi\Lambda^2 s(s - m_W^2)^2}$$

$$+ c_{Qq}^{3,1} \frac{g^2(s - m_t^2)^2(2s + m_t^2)}{48\pi\Lambda^2 s^2(s - m_W^2)}$$

CHANNELS

s-channel

t-channel

W-assoc.

Z-assoc.

t decay

CHANNELS	OPERATORS
s-channel	${}^{\ddagger}\mathcal{O}_{uG}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} T^A u_j) \tilde{\varphi} G^A_{\mu\nu}$
t-channel	${}^{\ddagger}\mathcal{O}_{uW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau_I u_j) \tilde{\varphi} W_{\mu\nu}^I$
	$\mathcal{O}_{\varphi q}^{3(ij)} = (\varphi^{\dagger} \overleftrightarrow{iD_{\mu}^{I}} \varphi)(\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{j})$
W-assoc.	${}^{\ddagger}\mathcal{O}_{dW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau_I d_j) \varphi W_{\mu\nu}^I$
Z-assoc.	${}^{\ddagger}\mathcal{O}_{\varphi ud}^{1(ij)} = (\tilde{\varphi}^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{i}\gamma^{\mu}d_{j})$
t decay	$\mathcal{O}_{qq}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j)(\bar{q}_k \gamma_{\mu} q_l)$
	$\mathcal{O}_{qq}^{3(ijkl)} = (\bar{q}_i \gamma^\mu \tau^I q_j) (\bar{q}_k \gamma_\mu \tau^I q_l)$

CHANNELS	OPERATORS	WILSON COEFFICIENT	S
s-channel	${}^{\dagger}\mathcal{O}_{uG}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} T^A u_j) \tilde{\varphi} G^A_{\mu\nu}$	$Re\{\mathcal{O}_{uG}^{(33)}\}$	c_{tG}
t-channel	${}^{\ddagger}\mathcal{O}_{uW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau_I u_j) \tilde{\varphi} W_{\mu\nu}^I$	$Re\{\mathcal{O}_{uW}^{(33)}\}$	c_{tW}
	$\mathcal{O}_{\varphi q}^{3(ij)} = (\varphi^{\dagger} i \overleftrightarrow{D_{\mu}^{I}} \varphi) (\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{j})$	$\mathcal{O}_{\varphi q}^{3(33)}$	$c_{\varphi q}^3$
W-assoc.	${}^{\ddagger}\mathcal{O}_{dW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau_I d_j) \varphi W_{\mu\nu}^I$	$Re\{\mathcal{O}_{dW}^{(33)}\}$	c _{bW}
Z-assoc.	${}^{\dagger}\mathcal{O}_{\varphi ud}^{1(ij)} = (\tilde{\varphi}^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{i}\gamma^{\mu}d_{j})$	$\operatorname{Re} \{ \mathcal{O}_{qud}^{(33)} \}$	C _{φtb}
t decav	$\mathcal{O}_{qq}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j)(\bar{q}_k \gamma_{\mu} q_l)$	$\mathcal{O}_{qq}^{3(ii33)} + \frac{1}{6}(\mathcal{O}_{qq}^{1(i33i)} - \mathcal{O}_{qq}^{3(i33i)})$	$c_{Qq}^{3,1}$
	$\mathcal{O}_{qq}^{3(ijkl)} = (\bar{q}_i \gamma^\mu \tau^I q_j) (\bar{q}_k \gamma_\mu \tau^I q_l)$	$\mathcal{O}_{qq}^{1(i33i)} - \mathcal{O}_{qq}^{3(i33i)}$	$c_{Qq}^{3,8}$

VERTEX	CHANNELS	OPERATORS	WILSON COEFFICIENT	S
Wtb	s-channel	${}^{\ddagger}\mathcal{O}_{uG}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} T^A u_j) \tilde{\varphi} G^A_{\mu\nu}$	$Re\{\mathcal{O}_{uG}^{(33)}\}$	C_{tG}
	t-channel	${}^{\dagger}\mathcal{O}_{uW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau_I u_j) \tilde{\varphi} W_{\mu\nu}^I$	$Re\{\mathcal{O}_{uW}^{(33)}\}$	c_{tW}
		$\mathcal{O}_{\varphi q}^{3(ij)} = (\varphi^{\dagger} \overleftrightarrow{iD_{\mu}^{I}} \varphi)(\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{j})$	$\mathcal{O}_{\varphi q}^{3(33)}$	$c_{\varphi q}^3$
	W-assoc.	${}^{\ddagger}\mathcal{O}_{dW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau_I d_j) \varphi W_{\mu\nu}^I$	$Re\{\mathcal{O}_{dW}^{(33)}\}$	c _{bW}
	Z-assoc.	${}^{\dagger}\mathcal{O}_{\varphi ud}^{1(ij)} = (\tilde{\varphi}^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\bar{u}_i \gamma^{\mu} d_j)$	$\operatorname{Re} \{ \mathcal{O}_{qud}^{(33)} \}$	C _{φtb}
	t decay	$\mathcal{O}_{qq}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j)(\bar{q}_k \gamma_{\mu} q_l)$	$\mathcal{O}_{qq}^{3(ii33)} + \frac{1}{6}(\mathcal{O}_{qq}^{1(i33i)} - \mathcal{O}_{qq}^{3(i33i)})$	$c_{Qq}^{3,1}$
		$\mathcal{O}_{qq}^{3(ijkl)} = (\bar{q}_i \gamma^\mu \tau^I q_j) (\bar{q}_k \gamma_\mu \tau^I q_l)$	$\mathcal{O}_{qq}^{1(i33i)} - \mathcal{O}_{qq}^{3(i33i)}$	$c_{Qq}^{3,8}$

VERTEX	CHANNELS	OPERATORS	WILSON COEFFICIENT	S
'qq'q"t	s-channel	${}^{\ddagger}\mathcal{O}_{uG}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} T^A u_j) \tilde{\varphi} G^A_{\mu\nu}$	$Re\{\mathcal{O}_{uG}^{(33)}\}$	C_{tG}
	t-channel W-assoc.	${}^{\ddagger}\mathcal{O}_{uW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau_I u_j) \tilde{\varphi} W_{\mu\nu}^I$	$Re\{\mathcal{O}_{uW}^{(33)}\}$	C_{tW}
		$\mathcal{O}_{\varphi q}^{3(ij)} = (\varphi^{\dagger} i \overleftrightarrow{D_{\mu}^{I}} \varphi) (\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{j})$	$\mathcal{O}_{\varphi q}^{3(33)}$	$c_{\varphi q}^3$
		${}^{\ddagger}\mathcal{O}_{dW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau_I d_j) \varphi W_{\mu\nu}^I$	$Re\{\mathcal{O}_{dW}^{(33)}\}$	c _{bW}
	Z-assoc.	${}^{\ddagger}\mathcal{O}_{\varphi ud}^{1(ij)} = (\tilde{\varphi}^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{i}\gamma^{\mu}d_{j})$	$\operatorname{Re} \{ \mathcal{O}_{qud}^{(33)} \}$	C _{φtb}
	t decay	$\mathcal{O}_{qq}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j)(\bar{q}_k \gamma_{\mu} q_l)$	$\mathcal{O}_{qq}^{3(ii33)} + \frac{1}{6}(\mathcal{O}_{qq}^{1(i33i)} - \mathcal{O}_{qq}^{3(i33i)})$	$c_{Qq}^{3,1}$
		$\mathcal{O}_{qq}^{3(ijkl)} = (\bar{q}_i \gamma^\mu \tau^I q_j)(\bar{q}_k \gamma_\mu \tau^I q_l)$	$\mathcal{O}_{qq}^{1(i33i)} - \mathcal{O}_{qq}^{3(i33i)}$	$c_{Qq}^{3,8}$

VERTEX	CHANNELS	OPERATORS	WILSON COEFFICIENT	S
ttg	s-channel	${}^{\ddagger}\mathcal{O}_{uG}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} T^A u_j) \tilde{\varphi} G^A_{\mu\nu}$	$Re\{\mathcal{O}_{uG}^{(33)}\}$	c _{tG}
	t-channel	${}^{\ddagger}\mathcal{O}_{uW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau_I u_j) \tilde{\varphi} W_{\mu\nu}^I$	$Re\{\mathcal{O}_{uW}^{(33)}\}$	c_{tW}
		$\mathcal{O}_{\varphi q}^{3(ij)} = (\varphi^{\dagger} \overleftrightarrow{iD_{\mu}^{I}} \varphi)(\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{j})$	$\mathcal{O}_{\varphi q}^{3(33)}$	$c_{\varphi q}^3$
	W-assoc.	${}^{\ddagger}\mathcal{O}_{dW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau_I d_j) \varphi W_{\mu\nu}^I$	$Re\{\mathcal{O}_{dW}^{(33)}\}$	c _{bW}
	Z-assoc.	${}^{\dagger}\mathcal{O}_{\varphi ud}^{1(ij)} = (\tilde{\varphi}^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\bar{u}_i \gamma^{\mu} d_j)$	$\operatorname{Re} \{ \mathcal{O}_{qud}^{(33)} \}$	C _{φtb}
	t decay	$\mathcal{O}_{qq}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j)(\bar{q}_k \gamma_{\mu} q_l)$	$\mathcal{O}_{qq}^{3(ii33)} + \frac{1}{6}(\mathcal{O}_{qq}^{1(i33i)} - \mathcal{O}_{qq}^{3(i33i)})$	$c_{Qq}^{3,1}$
		$\mathcal{O}_{qq}^{3(ijkl)} = (\bar{q}_i \gamma^\mu \tau^I q_j)(\bar{q}_k \gamma_\mu \tau^I q_l)$	$\mathcal{O}_{qq}^{1(i33i)} - \mathcal{O}_{qq}^{3(i33i)}$	$c_{Qq}^{3,8}$

VERTEX	CHANNELS	OPERATORS	WILSON COEFFICIENT	S
ttΖ, ttγ	s-channel	${}^{\ddagger}\mathcal{O}_{uG}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} T^A u_j) \tilde{\varphi} G^A_{\mu\nu}$	$Re\{\mathcal{O}_{uG}^{(33)}\}$	C_{tG}
	t-channel	${}^{\dagger}\mathcal{O}_{uW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau_I u_j) \tilde{\varphi} W_{\mu\nu}^I$	$Re\{\mathcal{O}_{uW}^{(33)}\}$	c_{tW}
		$\mathcal{O}_{\varphi q}^{3(ij)} = (\varphi^{\dagger} i \overleftrightarrow{D_{\mu}^{I}} \varphi) (\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{j})$	$\mathcal{O}_{\varphi q}^{3(33)}$	$c_{\varphi q}^3$
	W-assoc.	${}^{\ddagger}\mathcal{O}_{dW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau_I d_j) \varphi W_{\mu\nu}^I$	$Re\{\mathcal{O}_{dW}^{(33)}\}$	c _{bW}
	Z-assoc.	${}^{\ddagger}\mathcal{O}_{\varphi ud}^{1(ij)} = (\tilde{\varphi}^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{i}\gamma^{\mu}d_{j})$	$\operatorname{Re} \{ \mathcal{O}_{qud}^{(33)} \}$	C _{φtb}
	t decay	$\mathcal{O}_{qq}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j)(\bar{q}_k \gamma_{\mu} q_l)$	$\mathcal{O}_{qq}^{3(ii33)} + \frac{1}{6}(\mathcal{O}_{qq}^{1(i33i)} - \mathcal{O}_{qq}^{3(i33i)})$	$c_{Qq}^{3,1}$
		$\mathcal{O}_{qq}^{3(ijkl)} = (\bar{q}_i \gamma^\mu \tau^I q_j) (\bar{q}_k \gamma_\mu \tau^I q_l)$	$\mathcal{O}_{qq}^{1(i33i)} - \mathcal{O}_{qq}^{3(i33i)}$	$c_{Qq}^{3,8}$

- theoretical: identical predictions

 → averaging (alternative nuisance nuisance parameters, but we get too many)
- systematic: build matrix of uncertainties, write correlated ones in same column
- all handled with DataPrep

χ^2 contributions for correlated uncertainties

 χ^2 contributions for uncorrelated systematic uncertainties

CONCLUSION

CONCLUSION

- new: correlated uncertainties
- s-channel important!
- distributions do not seem to change anything, 7 TeV-data has small impact
- NLO corrections very important, $O(\Lambda^{-4})$ not so much
- results in perfect agreement with SM & 5 times more accurate than literature!
- looking forward to merging datasets :)

Thank you!

