Introduction	W helicity fractions	$t\overline{t}$ spin correlations	Higgs PT	Future challenges	Conclusions

Precision observables for new physics searches

Arnd Behring

Institut für Theoretische Teilchenphysik (TTP) Karlsruher Institut für Technologie

July 11th, 2019 - CRC257 Workshop on SMEFT - Heidelberg

Introduction	W helicity fractions	$t\overline{t}$ spin correlations	Higgs PT	Future challenges	Conclusions

Status of new physics searches today

- No direct evidence for new physics at the LHC (so far)
- Use available data to maximum extent possible
- Use precision calculations to search for / constrain new physics

Goals of this talk

- Show progress in precision calculations for the LHC
- Highlight examples with connection to BSM searches
- Discuss future challenges for higher-order calculations

Precision calculations for the LHC

[Campbell, Ellis, Li, Williams '16]

New physics searches using precision calculations

- Precision calculations become increasingly important for new physics searches
- New physics searches become possible that would not be possible otherwise

New physics searches using precision calculations

- Precision calculations become increasingly important for new physics searches
- New physics searches become possible that would not be possible otherwise

Top decay: W helicity fractions

Observable

• Top decay: Differential distribution of charged lepton/d-type quark

$$\frac{1}{\Gamma}\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta^*} = \frac{3}{8}(1-\cos\theta^*)^2 F_L + \frac{3}{4}(\sin\theta^*)^2 F_0 + \frac{3}{8}(1+\cos\theta^*)^2 F_R$$

• $\cos \theta^*$: Angle between charged lepton/*d*-type quark and reversed direction of *b* quark in *W* rest frame

W helicity fractions

$$F_{L,R,0} = \frac{\Gamma_{L,R,0}}{\Gamma}$$

 Measures production mode of W bosons in top decays

Conclusions

Relevance for BSM searches

• Sensitive to structure of tWb vertex, e.g.,

$$\mathcal{L}_{tWb} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}(V_LP_L + V_RP_R)tW_{\mu}^{-}$$
$$-\frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_W}(g_LP_L + g_RP_R)tW_{\mu}^{-} + \text{h.c}$$

- Longitudinal W polarisation related to Goldstone bosons \Rightarrow sensitive to modified Higgs sector
- Used by ATLAS and CMS to set limits on anomalous couplings

Experimental situation

Use angular distribution of W decay products to measure helicity of W boson

$$\frac{1}{\Gamma}\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta^*} = \frac{3}{8}(1-\cos\theta^*)^2 F_L + \frac{3}{4}(\sin\theta^*)^2 F_0 + \frac{3}{8}(1+\cos\theta^*)^2 F_R$$

 $\begin{array}{ccc} F_0 & F_L & F_R \\ \text{ATLAS}_{\text{[ATLAS '17]}} & 0.709 \pm 0.019 & 0.299 \pm 0.015 \\ \text{NNLO QCD} + \text{NLO EW} & 0.687 \pm 0.005 & 0.311 \pm 0.005 & 0.0017 \pm 0.0001 \\ \end{array}$

Higgs PT

Experimental situation

Use angular distribution of W decay products to measure helicity of W boson

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta^{*}} = \frac{3}{8}(1-\cos\theta^{*})^{2}F_{L} + \frac{3}{4}(\sin\theta^{*})^{2}F_{0} + \frac{3}{8}(1+\cos\theta^{*})^{2}F_{R}$$

Measurement

- $t\bar{t}$ production in lepton+jets channel
- Reconstruct *t̄t* system
 ⇒ associate *b* jet correctly
- Extrapolate fiducial to inclusive measurement
- Fit distribution to extract F_{L,R,0}

$$\begin{array}{ccc} F_0 & F_L & F_R \\ ATLAS [ATLAS '17] & 0.709 \pm 0.019 & 0.299 \pm 0.015 \\ NNLO QCD + NLO EW & 0.687 \pm 0.005 & 0.311 \pm 0.005 & 0.0017 \pm 0.0001 \\ [Czarnecki, Körner, Piclum '10] \end{array}$$

Higgs PT

Precision predictions

W helicity fractions

- Measured very precisely (percent level accuracy)
- Perturbative corrections converge well [Czarnecki, Körner, Piclum '10]

e.g., $F_L = 0.3032 \cdot (1_{LO} + 2.15\%_{NLO} + 0.70\%_{NNLO})$

- Question: How close is what is calculated to what is being measured?
 - Decay in isolation:
 - Impossible to compute an observable following a set-up similar to experimental one
 - · No realistic selection criteria, no contamination from the production, no combinatorics
 - \Rightarrow Experiments have to extrapolate from fiducial to inclusive measurement

Recent developments

- Progress in fixed-order calculations:
 - $\Rightarrow t \overline{t}$ production with decays at NNLO QCD
- More realistic description of final states

 \rightarrow Moves interface between theory and experiment closer to experimental side

Higgs p.

Spin correlations in $t\bar{t}$ production

Observable

- $t\bar{t}$ production in dilepton channel
- Tops and anti-tops from $t\bar{t}$ essentially unpolarised, but spins highly correlated
- Differential distributions of lepton kinematics in lab frame
 - Lepton azimuthal opening angle $\Delta \phi(\ell, ar{\ell})$
 - Lepton rapidity difference $|\Delta \eta(\ell, \bar{\ell})|$

Spin correlations in $t\bar{t}$ production

Observable

- $t\bar{t}$ production in dilepton channel
- Tops and anti-tops from $t\bar{t}$ essentially unpolarised, but spins highly correlated
- Differential distributions of lepton kinematics in lab frame
 - Lepton azimuthal opening angle $\Delta \phi(\ell, ar{\ell})$
 - Lepton rapidity difference $|\Delta\eta(\ell,ar{\ell})|$

Competing effects

- Boosts of top quarks enhance anti-parallel leptons
- Spin correlations counteract and enhance parallel leptons

[ATLAS '19]

New physics searches with $t\bar{t}$ spin correlations

Example: Stealth stops

- Top squarks can be light in the MSSM
- Light stops have mostly been excluded by direct searches
- But if $m_{\tilde{t}} \approx m_t$: Difficult to distinguish from SM tops \rightarrow "Stealth stops"
- Squarks are scalar particles
 ⇒ Use spin correlations to search for
 stealth tops

Example: Top quark CMDM operator

Chromomagnetic dipole moment operator

 $O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^a t) \tilde{\phi} G^a_{\mu\nu}$

- Modifies tt
 spin correlations
- Can be constrained using these observables

New physics searches with $t\bar{t}$ spin correlations

Example: Stealth stops

- Top squarks can be light in the MSSM
- Light stops have mostly been excluded by direct searches
- But if $m_{\tilde{t}} \approx m_t$: Difficult to distinguish from SM tops \rightarrow "Stealth stops"
- Squarks are scalar particles
 ⇒ Use spin correlations to search for
 stealth tops

Example: Top quark CMDM operator

Chromomagnetic dipole moment operator

 $O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^a t) \tilde{\phi} G^a_{\mu\nu}$

- Modifies tt spin correlations
- Can be constrained using these observables

Higgs P7

NNLO predictions for $t\bar{t}$ spin correlations

Why has this not been possible before?

- Complicated process with complex final state
 ⇒ Use narrow width approximation (NWA)
 to factorise production and decay
- Virtual corrections: Needs polarised 2-loop ME
 - Decay: Available since ~ 2008 [Bonciani, Ferroglia '08] [Asatrian, Greub, Pecjak '08] [Beneke, Huber, Li '09]
 - Production: Recently completed [Chen, Czakon, Poncelet '18]
- Real radiation: Needs efficient subtraction for many IR limits
 - $\Rightarrow {\sf Extension \ of \ sector \ improved \ residue} \\ {\sf subtraction \ scheme \ for \ NWA}$

 \rightarrow Payoff: NNLO QCD predictions for realistic final states

Conclusions

Dilepton $\Delta \phi(\ell, \bar{\ell})$ distributions at NNLO

- Agreement between data and theory improves at NNLO
- Higher-order corrections (\rightarrow additional radiation) can mimic spin-correlations

 \rightarrow Precision calculations are important to model observables accurately

Conclusion

Higgs p_T distribution

Motivation

- Charm Yukawa coupling y_c is mostly unconstrained so far, $\kappa_c = \frac{y_c}{\sqrt{SM}}$
- y_c is difficult to measure directly @ LHC

Idea: Detect/place limits on deviations of y_Q

Use p_T spectrum of Higgs at $m_c \ll p_T \ll m_h$ [Bishara, Haisch, Monni, Re '17] [Soreq, Zhu, Zupan '16]

- $gQ \rightarrow hQ$ and $Q\bar{Q} \rightarrow hg$: • $gg \rightarrow hg$: $d\sigma = d\sigma_{tt} + d\sigma_{tQ} + d\sigma_{QQ} + \dots$ 0000 0000 ത്ത് ത്ത് 0000 .0000 0000 00000 00000 t, b, c, ... t, b, c, ... • $\mathrm{d}\sigma_{tQ}$: $\kappa_Q \frac{m_Q^2}{m_L^2} \ln^2\left(\frac{p_\perp^2}{m_Q^2}\right)$ terms • Scales like $\kappa_Q^2 \frac{m_Q^2}{2}$ \Rightarrow enhance b and c contributions at low p_T But suppressed by PDFs • Most relevant for $\kappa_Q \lesssim 10$
 - Most relevant for $\kappa_{\it Q}\gtrsim 10$

Higgs p_T distribution

Motivation

- Charm Yukawa coupling y_c is mostly unconstrained so far, $\kappa_c = \frac{y_c}{v_c^{SM}}$
- y_c is difficult to measure directly @ LHC

Idea: Detect/place limits on deviations of y_Q

Use p_T spectrum of Higgs at $m_c \ll p_T \ll m_h$ [Bishara, Haisch, Monni, Re '17] [Soreq, Zhu, Zupan '16]

- Higgs p_T spectrum receives large perturbative corrections
- Charm contribution is small compared to corrections from top loop

Precision predictions

- Top-loop contributions known
 - to NNLO + N³LL with $m_t \rightarrow \infty$ (HEFT)
 - to NLO with full m_t dependence
- Top-bottom & top-charm interference known
 - to LO with full m_Q
 - to NLO with $m_Q \rightarrow 0$
- Contributions from b and c quarks are O(1-5%) effects in the SM

 \rightarrow Requires precision calculations since perturbative corrections are large

Higgs PT

Future cha

Conclusions

Experimental situation

- Based on NLO QCD calculation
- Corresponds to LO for top-charm interference
- Constrains $-33 < \kappa_c < 38$ at 95% CL

Projections for Run II and HL-LHC

- Assumptions on theoretical uncertainties for
 - Run II: ±5%
 - HL-LHC: ±2.5%
- Requires at least NLO top-charm interference
- Would constrain charm Yukawa coupling to
 - Run II: $-1.4 < \kappa_c < 3.8$
 - HL-LHC: $-0.6 < \kappa_c < 3.0$

Challenges for the future

Recent developments allow us to think about new challenging opportunities

- Mixed QCD-EW corrections to Z + j at high p_T
 - Background to dark matter studies at LHC
 - Amplitudes with nearly massless EW gauge bosons
 → Progress from expansion techniques?
- $gg \rightarrow ZH$
 - Search for new physics in top loop
 - Evaluation of integrals with different masses
 → Progress from numerical techniques?
- tth production
 - Measure top Yukawa coupling precisely
 - Many masses/scales
 - \rightarrow challenging integral reductions
 - \rightarrow evaluation of very complicated integrals
- ttZ production
 - Probe top gauge couplings
 - Similar challenges as for tth

Introduction	W helicity fractions	$t\bar{t}$ spin correlations	Higgs P_T	Future challenges	Conclusions			
Conclusions								

- Remarkable progress in higher-order corrections in recent years
- More realistic final states and fiducial calculations become possible
- Precision calculations enable us to make the most of (HL-)LHC data
- New physics searches profit from increased precision \rightarrow New opportunities for measurements that would be impossible otherwise
- Communication with different communities (experiment, EFT, model building, mathematics, ...) will be helpful to guide and inspire progress