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Global fits



Global fits in various flavours

New Physics fits in individual flavour sectors within their respective
weak effective (field) theories (WETs):

b→ sµ+µ−
[Munich; Barcelona/Paris; Rome; Lyon/Mainz]

▶ weak hamiltonian with most-general [sb] [ℓℓ]
operators up to dim-6 10× 3 WCs (10× 6 with LFV)

▶ restricted to SM operators and coefficients for
[qb] [sq] operators up to dim-6

b→ cℓ−ν [e.g. Jung,Straub ’18; Blanke et al. ’19; Murgui et al. ’19]

▶ full basis of operators up to dim-6 with left-handed
neutrinos 5× 3 WCs

b→ uℓ−ν [e.g. Feldmann,Müller,DvD ’15]

▶ full basis of operators up to dim-6 with left-handed
neutrinos 5× 3 WCs
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What about the one global fit?

it’s complicated

idea is (relatively) recent and “simple”

1. select a NP model
2. generate SMEFT parameter point
3. match to WET/LEFT and run to µ ≃ mb [e.g. wilson]

4. calculate likelihood [e.q. EOS; flavio]

reality

▶ one implementation of a (close to global) flavour fit using open
source tools: smelli [Aebischer, Kumar, Stangl, Straub ’18]

▶ to handle simultaneously a large number of nuisance parameters
is technically challenging / bordering on the impossible

▶ modifies statistical approach; neither frequentist nor Bayesian
▶ discussed in the following …
▶ presently: best we can do!
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smelli: Statistical approach (1)

global likelihood L decomposed as:

L =
∏
C1

L(C⃗ ) ×
∏
C2

L(C⃗, θ⃗ )

to categories of likelihood

C1 exp. uncertainties ≫ theoretical uncertainties
C2 theoretical uncertainties taken into account

nuisance parameters θ⃗

▶ parameters relevant only for a subset of observables
▶ control theory uncertainties

example: parameters of B→ D form factors are dominantly relevant in
B→ Dµν processes only
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smelli: Statistical approach (2)

for category C2:

▶ assume (multivariate) gaussian exp. errors → covariance Σe

▶ assume (multivariate) gaussian theor. unc. → covariance Σt

▶ compute Σt in the SM from nuisance parameters θ⃗

approximate:

−2 lnLC2(C⃗ , θ⃗ ) = −2 lnLC2(C⃗ )

=
[
o⃗e − o⃗t(C⃗ )

]T
[Σe +Σt]

−1
[
o⃗e − o⃗t(C⃗ )

]
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Aside: theory uncertainties and nuisance parameters (1)

Matrix elements of local operators c Γb (and s Γb) parametrised through form
factors

[Wu 2015]
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Aside: theory uncertainties and nuisance parameters (1)

Matrix elements of local operators c Γb (and s Γb) parametrised through form
factors

▶ functions of momentum transfer (q2)
▶ 3 independent functions in e.g. B→ D or B→ K
▶ 7 independent functions in e.g. B→ D∗ or B→ K∗

▶ low-energy QCD effects prohibit diect calculation
▶ numerical simulation (lattice QCD) [e.g. HPQCD ’15, FNAL/MILC ’15]

▶ or non-perturbative methods (Light-Cone Sum Rules) [Gubernari, Kokulu, DvD ’18]

parameter budget
▶ roughly 3 parameters per form factor

→ 30 nuisance parameters for B→ D(∗)µν

→ 30+ nuisance parameters for B→ K(∗)µ+µ−
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Hadronic Matrix Elements: Non-Local Effects (1)

B→ K∗µ+µ− landscape:
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Hadronic Matrix Elements: Non-Local Effects (2)

AL,R
λ = Nλ

{
(C9 ∓ C10)Fλ(q2) +

2mbMB
q2

[
C7FT

λ(q2)− 16π2MB
mb

Hλ(q2)
]}

non-local: Hλ(q2) = iPλ
µ

∫
d4x eiq·x ⟨Mλ(k)| T

{
J µ

em(x), CiOi(0)
}
|B(q+ k)⟩

▶ first approach to a systematic parametrization [Bobeth,Chrzaszcz,DvD,Virto ’17]

▶ need ∼ 3 parameters per non-local matrix element
▶ now total of 60 parameters for B→ K(∗)µ+µ−



Issues



Issues

my (subjective) list of issues with the global fit (two universal, one
smelli specific), ordered from least to most severe:

▶ dilution of the anomalies in statistical tests universal

▶ NP-dependence of the theory uncertainties smelli spec.

▶ NP-dependence of the measurements universal
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Dilution

▶ presently, hints of NP only show up in a tiny corner of flavour
processes

▶ rare b→ sµ+µ− decays
▶ b→ cτν
▶ s→ d{qq,G} (ε′/ε) obliged by TUM contract to list this; hi Andrzej!

▶ a truly global fit would include many more measurements which
are fully compatible with the SM

▶ O (100) of observabkes
▶ expect a few 2σ outliers, even some 3σ outliers
▶ underestimate the statistical significance of the anomalies
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NP-dependence of the theory uncertainties

−2 lnLC2(C⃗ , θ⃗ ) = −2 lnLC2(C⃗ )

=
[
o⃗e − o⃗t(C⃗ )

]T
[Σe +Σt]

−1
[
o⃗e − o⃗t(C⃗ )

]
▶ assuming that the theory uncertainties in the SM reflect the theory

uncertainties in every NP point can be problematic

▶ AFB(q2) in B→ K∗µ+µ−

features zero-crossing in the SM

▶ absolute theory uncertainty
massively reduced in bins
surounding the zero crossing
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NP-dependence of the measurements (1)

▶ R(D(∗)) measurements based on historgram template fits
▶ used for τ → µνν reconstruction by BaBar / Belle / LHC
▶ after subtracting backgrounds, determines one relative yield nτ

based on SM shape of the B→ D(∗)τ(→ µνν)ν mode
▶ obtain LFU ratio as

R(D) ∼ nτ
1− nτ

× efficiency corrections

aside: electromagnetic corrections

▶ recent theory analysis of soft-photon effects [de Boer et al. ’18]

▶ triggered sensitivity study by LHCb members, based on the present
LHCb setup [Cali et al ’19]

▶ find bias up to 8% depending on max. radiated energy
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NP-dependence of the measurements (2)

▶ NP would distort template shapes (in particular: scalar/tensor
couplings!)

[BaBar ’13]

similar plots and statements in Belle and LHCb measurements of
R(D(∗))
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What’s the alternative ?



Staged approach

SMEFT WCs (µ ≃ mb)

b → cτ−ν
WET WCs

B → D∗τ−ν

Λb → Λcτ
−ν

b → sℓ+ℓ−
WET WCs

B → K∗µ+µ−

Λb → Λµ+µ−

. . .

WET WCs

fit 1 fit 2
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Benefits

▶ each WET WC fit can be performed separately from each other
▶ not quite “once and for all” [(C) I. Brivio]

but no need to re-fit WET WCs in every SMEFT analysis
▶ small overlap of nuisance parameters (e.g. B→ π form factors in
b→ uτν and b→ dℓ+ℓ−)

▶ Bayesian parlance: use WET posteriors as priors for SMEFT fit

▶ each WET WC fit can be individually checked for consistency
▶ do mesonic and baryonic modes agree?
▶ do modes related by SU(3)F agree?

▶ each WET WC posterior can be stored as random variates
▶ SMEFT prior would be implemented as an unbinned likelihood
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Summary & Outlook



Summary

flavour and SMEFT

▶ flavour anomalies are a potential sign of NP
▶ interpretation of the anomalies within the SMEFT is crucial to

understand their possible NP origins

global SMEFT fits to flavour constraints

▶ smelli is a good start to explore the flavour constraints on the
SMEFT parameter space

my preferred alternative / cross check

▶ staged approach with individual fits per sector
▶ can be implemented within smelli / wilson tool chain!
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Outlook / tasks for the theorists (1)

B→ D(∗) form factor [Bordone, Jung, DvD to appear]
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▶ first pure theory determination form factors at order 1/m2
c,

▶ includes form factors for full basis of dim-6 operators
▶ covers entire semileptonic phase space 0 ≤ q2 ≤∼ 11 GeV2
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Outlook / tasks for the theorists (2)

Λb → Λµ+µ−
[Blake, Meinel, DvD to appear]
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