High-energy cosmic neutrinos: Where do we stand, where do we go, And how do we get there

Mauricio Bustamante

Niels Bohr Institute, University of Copenhagen

HIRSAP Workshop Karlsruhe, September 24, 2019

VILLUM FONDEN

2019: We are getting close to finding what is making them!

Using UHECRs to find their sources is tough

► The Universe is opaque to UHECRs

► CRs lose energy by scattering on the cosmic microwave background (CMB):

 $p + \gamma_{\text{CMB}} \rightarrow p + e^+ + e^-$

• Protons above $4 \cdot 10^9$ GeV do not survive more than ~100 Mpc

Cosmic rays do not point back at their sources

- ► Magnetic fields: µG (Milky Way) nG (extragalactic)
- Deflections of up to tens of degrees

Uncertainties about how high-energy particle showers work

Jellyfish Nebula , NASA

Luckily, UHECR sources should be wasteful...

Astrophysical accelerators *inevitably* make high-energy secondaries

UHE cosmic rays + Photons \rightarrow Neutrinos

Figure courtesy of Markus Ahlers Also in: Van Elewyck, **MB** *et al.*, PoS(ICRC2019), 1023

Also in: Van Elewyck, MB et al., PoS(ICRC2019), 1023

Also in: Van Elewyck, MB et al., PoS(ICRC2019), 1023

Also in: Van Elewyck, MB et al., PoS(ICRC2019), 1023

Why study high-energy astrophysical neutrinos?

They are key to answering two major questions –

- 1 What makes the most energetic particles we detect?
- 2 How does particle physics look at these energies?

Flux of cosmic rays at Earth

- 1 They have the highest energies (~PeV)
 - → Probe energetic non-thermal sources & physics at new energy scales

- They have the highest energies (~PeV)
 → Probe energetic non-thermal sources & physics at new energy scales
- 2 They have the longest baselines (~Gpc)
 - → Tiny effects may accumulate en route to Earth and become observable

- They have the highest energies (~PeV)
 → Probe energetic non-thermal sources & physics at new energy scales
- 2 They have the longest baselines (~Gpc)
 - → Tiny effects may accumulate en route to Earth and become observable

- 3
- Neutrinos are weakly interacting
 - → They bring untainted information across cosmological scales
 → But they are also difficult to detect

- 3
- Neutrinos are weakly interacting
- → They bring untainted information across cosmological scales
 → But they are also difficult to detect

4 Neutrinos have a unique quantum number: flavor
 → Powerful probe of astrophysics and neutrino physics
 → But flavor is hard to reconstruct

Prediction and discovery

$$p + \gamma_{\text{target}} \rightarrow \Delta^+ \rightarrow \begin{cases} p + \pi^0, \ \text{Br} = 2/3 \\ n + \pi^+, \ \text{Br} = 1/3 \end{cases}$$

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3\\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \\ \pi^{0} \rightarrow \gamma + \gamma \\ \pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu} \\ n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e} \end{cases}$$

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$
$$\pi^{0} \rightarrow \gamma + \gamma$$
$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$
$$n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e}$$

Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 10

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$
$$\pi^{0} \rightarrow \gamma + \gamma$$
$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$
$$n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e}$$

1 PeV 20 PeV Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 10

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$
$$\pi^{0} \rightarrow \gamma + \gamma$$
$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$
$$n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e}$$

1 PeV 20 PeV Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 10

How many neutrinos? The Waxman-Bahcall bound

- ► Energy production rate of extragalactic cosmic-ray protons in the energy range 10¹⁹–10²⁰ eV: $\dot{\varepsilon}_{CR}^{[10^{19},10^{21}]} \sim 5 \cdot 10^{44} \text{ erg Mpc}^{-3} \text{ yr}^{-1}$
- So, the energy-dependent generation rate of cosmic rays is $E_{\text{CR}}^2 \frac{d\dot{N}_{\text{CR}}}{dE_{\text{CR}}} = \frac{\dot{\varepsilon}_{\text{CR}}^{[10^{19},10^{21}]}}{\ln(10^{21}/10^{19})} \approx 10^{44} \text{ erg Mpc}^{-3} \text{ yr}^{-1}$
- ▶ Protons lose a fraction ϵ < 1 in photohadronic production of pions in the sources
- ► Present-day energy density of $\nu_{\mu} + \overline{\nu}_{\mu}$: $E_{\nu}^{2} \frac{dN_{\nu}}{dE_{\nu}} \approx \frac{1}{4} \epsilon t_{\rm H} E_{\rm CR}^{2} \frac{dN_{\rm CR}}{dE_{\rm CR}}$ Br($p + \gamma \rightarrow \pi^{+}$) = 0.5 × Fraction of π energy going to $\nu_{\mu} + \overline{\nu}_{\mu}$ Hubble time: $t_{\rm H} \sim 10^{10}$ yr
- Maximum neutrino intensity is for $\epsilon = 1$: $I_{\text{max}} \approx \frac{1}{4} \xi_z t_{\text{H}} \frac{c}{4\pi} E_{\text{CR}}^2 \frac{d\dot{N}_{\text{CR}}}{dE_{\text{CR}}} \approx 1.5 \cdot 10^{-8} \xi_z \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$
- So the expected neutrino flux is $E_{\nu}^2 \Phi_{\nu\mu} \equiv \frac{c}{4\pi} E_{\nu}^2 \frac{dN_{\nu}}{dE_{\nu}} = \frac{1}{2} \epsilon I_{\text{max}}$

Waxman-Bahcall bound: $E_{\nu}^2 \Phi_{\nu\mu} \approx 0.75 \cdot 10^{-8} \xi_z \,\epsilon \,\mathrm{GeV} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1} \,\mathrm{sr}^{-1}$

Waxman & Bahcall, PRD 1999

The need for km-scale detectors

Predicted by Waxman-Bahcall 1998
Neutrino flux at TeV–PeV: $E^2 \cdot \Phi \sim 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

Neutrino-nucleon cross section: $\sigma_{\nu p} \sim 10^{-35} \text{ cm}^2 (E/\text{GeV})^{0.36}$ energy of 1 GeV: $\sigma_{\mu p} \sim 10^{-28} \text{ cm}^2$ $\sigma_{\gamma p} \sim 10^{-29} \text{ cm}^2$

Number of detected neutrinos from half the sky in 1 yr:

$$N = (n_{\text{nucl}} \cdot V_{\text{det}}) \cdot (2\pi) \cdot (1 \text{ yr}) \cdot \int_{100 \text{ TeV}} \Phi(E) \cdot \sigma_{\nu p}(E) dE$$

▶ To detect N > 10 neutrino, we needed

 $V_{\rm det} > 1 \,\rm km^3$

The need for km-scale detectors

Predicted by Waxman-Bahcall 1998
 Neutrino flux at TeV–PeV: $E^2 \cdot \Phi \sim 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

Neutrino-nucleon cross section: $\sigma_{\nu p} \sim 10^{-35} \text{ cm}^2 (E/\text{GeV})^{0.36}$ energy of 1 GeV: $\sigma_{pp} \sim 10^{-28} \text{ cm}^2$ $\sigma_{\gamma p} \sim 10^{-29} \text{ cm}^2$

Number of detected neutrinos from half the sky in 1 yr:

$$N = (n_{\text{nucl}} \cdot V_{\text{det}}) \cdot (2\pi) \cdot (1 \text{ yr}) \cdot \int_{100 \text{ TeV}} \Phi(E) \cdot \sigma_{vp}(E) \, dE$$

Number density of
nucleons: $\sim N_{\text{Av}} \, \text{cm}^3$

▶ To detect N > 10 neutrino, we needed

 $V_{\rm det} > 1 \,\rm km^3$

IceCube – What is it?

- ► Km³ in-ice Cherenkov detector in Antarctica
- ► >5000 PMTs at 1.5–2.5 km of depth
- ► Sensitive to neutrino energies > 10 GeV

IceCube (8 years)

km³ in-ice Cherenkov detector

103 contained events, 15 TeV-2 PeV

103 contained events, 15 TeV-2 PeV

Fraction of $u_{
m e}$

Status quo of high-energy cosmic neutrinos

What we know

- Isotropic distribution of sources
- Spectrum is a power law $\propto E^{-p}$
- At least some sources are gammaray transients
- No correlation between directions of cosmic rays and neutrinos
- Flavor composition: compatible with equal number of v_e , v_{μ} , v_{τ}
- No evident new physics

What we don't know

- The sources of the diffuse v flux
- The ν production mechanism
- ► The spectral index of the spectrum
- ► A spectral cut-off at a few PeV?
- ► Are there Galactic *v* sources?
- ► The precise flavor composition
- ► Is there new physics?

Status quo of high-energy cosmic neutrinos

But we have solid theory expectations + fast experimental progress

What we know

- Isotropic distribution of sources
- Spectrum is a power law $\propto E^{-p}$
- At least some sources are gammaray transients
- No correlation between directions of cosmic rays and neutrinos
- Flavor composition: compatible with equal number of ν_e, ν_µ, ν_τ
- No evident new physics

What we don't know -

- The sources of the diffuse v flux
- The ν production mechanism
- ► The spectral index of the spectrum
- ► A spectral cut-off at a few PeV?
- Are there Galactic v sources?
- ► The precise flavor composition
- ► Is there new physics?

Neutrino production

The Hillas criterion

- Necessary condition for a source to accelerate cosmic rays
- Particles must stay confined:
 Larmor radius < Size of acceleration region

 $R_{\rm L} = E/(Z e B) < (R \Gamma)$

Maximum energy:

$$E_{\rm max} \approx \left(3 \cdot 10^{20} \text{ eV}\right) \eta^{-1} \beta_{\rm sh} Z \left(\frac{\Gamma R}{10^{16} \text{ cm}}\right) \left(\frac{B}{100 \text{ G}}\right)$$

The Hillas criterion

- Necessary condition for a source to accelerate cosmic rays
- Particles must stay confined:

Larmor radius < Size of acceleration region Electric charge of the particle $R_{I} = E/(ZeB) < (R\Gamma)$

Bulk Lorentz factor of accelerating region

Maximum energy:

$$E_{\rm max} \approx \left(3 \cdot 10^{20} \text{ eV}\right) \eta^{-1} \beta_{\rm sh} Z \left(\frac{\Gamma R}{10^{16} \text{ cm}}\right) \left(\frac{B}{100 \text{ G}}\right)$$

20

The Hillas criterion

- Necessary condition for a source to accelerate cosmic rays
- Particles must stay confined:

Larmor radius < Size of acceleration region Electric charge of the particle $R_{I} = E/(Z e B) < (R \Gamma)$

Bulk Lorentz factor of accelerating region

Maximum energy:

Acceleration efficiency ($\eta = 1$ for perfect efficiency)

$$E_{\rm max} \approx \left(3 \cdot 10^{20} \text{ eV}\right) \eta^{-1} \beta_{\rm sh} Z \left(\frac{\Gamma R}{10^{16} \text{ cm}}\right) \left(\frac{B}{100 \text{ G}}\right)$$

Speed $v_{\rm sh}/c$ of the outflow

20

Kinematics of high-energy neutrino production (1/2) • What are the proton and photon energies needed for $p + \gamma \rightarrow \Delta$? Four-vectors $(p_p + p_{\gamma})^2 = p_{\Delta}^2 \Rightarrow p_p^2 + p_{\gamma}^2 + 2p_p \cdot p_{\gamma} = p_{\Delta}^2$ But $p^2 = m^2$ for massive particles, so $m_p^2 + 2p_p \cdot p_{\gamma} = m_{\Delta}^2$.

Now, $p_p \cdot p_\gamma = E_p E_\gamma - \bar{p}_p \cdot \bar{p}_\gamma = E_p E_\gamma - |\bar{p}_p| \cdot |\bar{p}_\gamma| \cos \theta_{p\gamma}$.

For the photon, $|\bar{p}_{\gamma}| = E_{\gamma}$. For the high-energy proton, $|\bar{p}_{p}| = \sqrt{E_{p}^{2} - m_{p}^{2}} \approx E_{p}$. So, $p_{p} \cdot p_{\gamma} = E_{p}E_{\gamma} (1 - \cos \theta_{p\gamma})$. Plugging this back yields $E_{p}E_{\gamma} = \frac{m_{\Delta}^{2} - m_{p}^{2}}{2(1 - \cos \theta_{p\gamma})}$.

► For a head-on collision (cos $\theta_{p\gamma} = -1$):

$$E_p E_\gamma = \frac{(1.232 \text{ GeV})^2 - (0.938 \text{ GeV})^2}{4} \approx 0.16 \text{ GeV}^2$$

Kinematics of high-energy neutrino production (2/2)

What are the energies of the neutrinos produced?

► In a $p + \gamma \rightarrow \pi^+$ interaction, the average pion energy is $E_{\pi} = E_p/5$

► In each decay $\pi^+ \rightarrow \nu_{\mu} + \overline{\nu}_{\mu} + \nu_e + e^+$, the average $\nu_{\mu} + \overline{\nu}_{\mu}$ energy is $E_{\nu} = E_{\pi}/4$

Therefore, each neutrino takes an average fraction of proton energy

 $E_{\nu}/E_p = 1/20 = 5\%$

► So: If we see ν with energy... PeV ($\equiv 10^{15}$ eV) 10 EeV ($\equiv 10^{19}$ eV)

... they were made by *p* with energy 20 PeV (these reach Earth) 200 EeV (these do not!)

Beyond the Δ resonance (1/2)

Beyond the Δ resonance (1/2)

Beyond the Δ resonance (1/2)

Beyond the Δ resonance (2/2)

(1) Δ -resonance region

$$p + \gamma \xrightarrow{\Delta(1232)} p' + \pi$$

(2) Higher resonances

$$p + \gamma \xrightarrow{\Delta, N} \Delta' + \pi , \quad \Delta' \to p' + \pi$$

(3) Direct production (*t* channel)

Same as (1) and (2), but in the *t* channel, *i.e.*, with a virtual pion

(4) Multi-pion production

Statistical production of two or more pions

Y Z

 π^+

n

E.g., neutrinos from a gamma-ray burst:

General anatomy of particle emission from a relativistic jet

Fireball model, internal collisions:

Part of the initial kinetic energy is radiated as γ , ν , and cosmic rays:

 f_e : Fraction of energy in photons f_p : Fraction of energy in protons f_B : Fraction of energy in magnetic field

Uncertainly known

Gamma rays – spectrum basics

Gamma-ray spectrum peaks at ~MeVTypically fitted by the Band function,

$$\nu F_{\nu}(E_{\gamma}) \propto \begin{cases} \left(\frac{E_{\gamma}}{100 \text{ keV}}\right)^{\alpha} \exp(-E_{\gamma}/E_{0}) , E_{\gamma} < (\alpha - \beta)E_{0} \\ \left(\frac{E_{\gamma}}{100 \text{ keV}}\right)^{\beta} , E_{\gamma} \ge (\alpha - \beta)E_{0} \end{cases}$$

- ► The spectrum evolves in time
- Some bursts are better fitted by a broken power law
- There might be multiple components

Gamma rays – spectrum basics

► Gamma-ray spectrum peaks at ~MeV ► Typically fitted by the Band function, $\begin{aligned}
(\alpha) &= -1 \\
\nu F_{\nu}(E_{\gamma}) \propto \begin{cases}
\left(\frac{E_{\gamma}}{100 \text{ keV}}\right)^{\alpha} \exp(-E_{\gamma}/E_{0}), E_{\gamma} < (\alpha - \beta)E_{0} \\
\left(\frac{E_{\gamma}}{100 \text{ keV}}\right)^{\beta} (\beta) &= -2
\end{cases}, E_{\gamma} \ge (\alpha - \beta)E_{0}
\end{aligned}$

- ► The spectrum evolves in time
- Some bursts are better fitted by a broken power law
- There might be multiple components

Cooking up neutrinos from a flaring gamma-ray source

Energy in neutrinos \propto energy in gamma rays

All the details are in the proportionality constant

Ingredients:

- ► Gamma-ray luminosity (erg s⁻¹)
- Variability time scale (s)
- Shape of photon spectrum
- Redshift
- Bulk Lorentz factor of jet
- Energy partition into *e*, *p*, magnetic field

Measured
Measured
Measured (sometimes)
Estimated
Estimated (if not guessed)

Energy in neutrinos \propto energy in gamma rays

$$\int_0^\infty \mathrm{d}E_\nu E_\nu F_\nu(E_\nu) = \frac{1}{8} \left[1 - \left(1 - \langle x_{p \to \pi} \rangle \right)^{\tau_{p\gamma}} \right] \frac{f_p}{f_e} \int_{1 \text{ keV}}^{10 \text{ MeV}} \mathrm{d}E_\gamma E_\gamma F_\gamma(E_\gamma)$$

The prompt neutrino fluence from one GRB Protons

The prompt neutrino fluence from one GRB Protons

Energy

The prompt neutrino fluence from one GRB

The prompt neutrino fluence from one GRB

Neutrino propagation

The Universe is opaque to UHECRs

Photohadronic processes:

$$p + \gamma \rightarrow \Delta \rightarrow \begin{cases} p + \pi^{0} \\ p + \pi^{0} \\ n + \pi^{+} \\ \varsigma \nu_{\mu} + \overline{\nu}_{\mu} + \nu_{e} + e^{+} \end{cases}$$

Pair production:

 $p + \gamma \rightarrow p + e^- + e^+$

Greisen-Zatsepin-Kuzmin (GZK) cut-off:

$$E_p \approx \frac{0.16 \text{ GeV}}{0.66 \text{ meV}} \approx 2 \cdot 10^{11} \text{ GeV}$$

(Assuming only photohadronic interaction)

Accounting also for pair production and CMB width: $E_p \approx 5 \cdot 10^{10} \ {\rm GeV}$

CMB: Microwave (black body, $\langle \epsilon \rangle \sim 0.66$ meV) 10^{3} 10^{2} CMB 10^{1} CIB1 (Franceschiniet al.) $\epsilon n_{\gamma} (\epsilon, 0) \ [\mathrm{cm}^{-3}]$ 10^{0} ----- CIB2 10^{-1} (Stecker et al.) 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6} -14 -12 -20-18-16 -10-8-6 $\log\left(\frac{\epsilon}{\text{GeV}}\right)$ CIB: optical (stars) + infrared (dust remission)

Target photon spectra (at z = 0):

 $n_{\gamma}(z) = (1+z)^3 n_{\gamma}(z=0)$ (exact only for CMB)

The Universe is opaque to UHECRs

Photohadronic processes:

$$p + \gamma \rightarrow \Delta \rightarrow \begin{cases} p + \pi^{0} \\ n + \pi^{+} \\ \downarrow \nu_{\mu} + \overline{\nu}_{\mu} + \nu_{e} + e^{+} \end{cases}$$

Pair production:

 $p + \gamma \rightarrow p + e^{-} + e^{+}$

Greisen-Zatsepin-Kuzmin (GZK) cut-off:

$$E_p \approx \frac{0.16 \text{ GeV}}{0.66 \text{ meV}} \approx 2 \cdot 10^{11} \text{ GeV}$$

(Assuming only photohadronic interaction)

Accounting also for pair production and CMB width:

 $E_p \approx 5 \cdot 10^{10} \text{ GeV}$

Mean free path:

$$(n_{\gamma} \langle \sigma \rangle_{p\gamma})^{-1} = (413 \text{ cm}^{-3} \times 200 \text{ }\mu\text{barn})^{-1}$$

 $\approx 10^{25} \text{ cm}$
 $\approx 4 \text{ Mpc}$

Energy-loss scale:

$$L = (E/\Delta E) (n_{\gamma} \langle \sigma \rangle_{p\gamma})^{-1} \\ \approx (1/0.2) \times 4 \text{ Mpc} \\ \approx 20 \text{ Mpc}$$

A more detailed calculation yields

$$L_{\rm GZK} = 50 \; \rm Mpc$$

The Universe is opaque to UHECRs

Photohadronic processes:

$$p + \gamma \rightarrow \Delta \rightarrow \begin{cases} p + \pi^{0} \\ n + \pi^{+} \\ \downarrow \nu_{\mu} + \overline{\nu}_{\mu} + \nu_{e} + e^{+} \end{cases}$$

Pair production:

 $p + \gamma \rightarrow p + e^{-} + e^{+}$

Greisen-Zatsepin-Kuzmin (GZK) cut-off: $E_p \approx \frac{0.16 \text{ GeV}}{0.66 \text{ meV}} \approx 2 \cdot 10^{11} \text{ GeV}$

(Assuming only photohadronic interaction)

Accounting also for pair production and CMB width: $E_p \approx 5 \cdot 10^{10} \ {\rm GeV}$

Greisen PRL 1966; Zatsepin & Kuzmin, JETP 1966

The Universe is *also* opaque to PeV gamma rays

Pair production:

 $\gamma_{\rm astro} + \gamma_{\rm cosmo} \rightarrow e^- + e^+$

Inverse Compton scattering:

 $e^\pm + \gamma_{\rm cosmo} \to e^\pm + \gamma$

Gamma rays Neutrinos UHE Cosmic rays

Point back at sources

Size of horizon

Energy degradation

Relative ease to detect

Energy degradation

Relative ease to detect

Neutrinos: Quintessential quantum particles

Neutrinos are created and detected as weak interaction states –

 $\nu_{\alpha} = \sum_{j=1}^{3} U_{\alpha i}^{*} \nu_{j} \text{ for } \alpha = e, \mu, \tau$

 ν_1 , ν_2 , ν_3 have different masses, so they travel at different speeds

Their superposition changes with time –

$$\nu_{\alpha}(L) = \sum_{j=1}^{3} U_{\alpha i}^* e^{-im_j L/E} \nu_j$$

Travel time: t, Travel time: L

Flavor-transition probability: the quick and dirty of it

• In matrix form: $\begin{pmatrix} \nu \\ \nu \\ \nu \end{pmatrix}$

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1}^* & U_{e2}^* & U_{e3}^* \\ U_{\mu1}^* & U_{\mu2}^* & U_{\mu3}^* \\ U_{\tau1}^* & U_{\tau2}^* & U_{\tau3}^* \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

▶ Pontecorvo-Maki-Nakagawa-Sakata matrix ($c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij}$):

Flavor-transition probability: the quick and dirty of it

• In matrix form:
$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1}^{*} & U_{e2}^{*} & U_{e3}^{*} \\ U_{\mu1}^{*} & U_{\mu2}^{*} & U_{\mu3}^{*} \\ U_{\tau1}^{*} & U_{\tau2}^{*} & U_{\tau3}^{*} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \xrightarrow{\theta_{13} \approx 9^{\circ}} \\ \theta_{13} \approx 9^{\circ} \\ \theta_{13} \approx 34^{\circ} \\ \delta \approx 222^{\circ} \end{pmatrix}$$
• Pontecorvo-Maki-Nakagawa-Sakata matrix $(c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij})$:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\alpha_{1}/2} & 0 & 0 \\ 0 & e^{i\alpha_{2}/2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{\text{Atmospheric}} \text{Cross mixing} \qquad \text{Solar} \qquad \text{Majorana CP phases}$$
• Probability for $\nu_{\alpha} \rightarrow \nu_{\beta}$: $P_{\nu_{\alpha} \rightarrow \nu_{\beta}} = \delta_{\alpha\beta} - 4 \sum_{i>j} \text{Re}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}) \sin^{2} \left(\Delta m_{ij}^{2}\frac{L}{4E}\right) + 2 \sum_{i>j} \text{Im}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}) \sin\left(\Delta m_{ij}^{2}\frac{L}{2E}\right)$

... But high-energy neutrinos oscillate *fast*

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re}(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin^{2} \left(\Delta m_{ij}^{2} \frac{L}{4E}\right) + 2 \sum_{i>j} \operatorname{Im}(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin\left(\Delta m_{ij}^{2} \frac{L}{2E}\right)$$

0.40 0.35 0.30 0.30 0.30 0.25 0.25 0.15 0.10 0.05 0.00 0.0 0.2 0.4 0.4 0.5 0.10 0.00 0.0 0.2 0.4 0.6 0.8 1.0Distance L [arb. units]

Oscillation length for 1-TeV ν : $2\pi \times 2E/\Delta m^2 \sim 0.1$ pc

~ 8% of the way to Proxima Centauri
« Distance to Galactic Center (8 kpc)
« Distance to Andromeda (1 Mpc)
« Cosmological distances (few Gpc)

We cannot resolve oscillations, so we use instead the average probability:

$$\langle P_{\nu_{\alpha} \to \nu_{\beta}} \rangle = \sum_{i=1}^{3} |U_{\alpha i}|^2 |U_{\beta i}|^2$$

... But high-energy neutrinos oscillate *fast*

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re}(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin^{2} \left(\Delta m_{ij}^{2} \frac{L}{4E}\right) + 2 \sum_{i>j} \operatorname{Im}(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin \left(\Delta m_{ij}^{2} \frac{L}{2E}\right)$$

0.40 0.35 0.30 $^{o}_{A}$ 0.30 0.30 0.25 0.25 0.15 0.10 0.05 0.00 0.0 0.2 0.4 0.2 0.2 0.15 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.15 0.00 0.05 0.00 0.15 0.00 0.05 0.00 0.05 0.15 0.00 0.05 0.00 0.05 0.00 0.15 0.00 0.05 0.00 0.05 0.00 0.15 0.00 0.05 0.05 0.00 0.05

Oscillation length for 1-TeV ν : $2\pi \times 2E/\Delta m^2 \sim 0.1 \text{ pc}$

~ 8% of the way to Proxima Centauri
< Distance to Galactic Center (8 kpc)
< Distance to Andromeda (1 Mpc)
< Cosmological distances (few Gpc)

We cannot resolve oscillations, so we use instead the average probability: -

$$\langle P_{\nu_{\alpha} \to \nu_{\beta}} \rangle = \sum_{i=1}^{3} |U_{\alpha i}|^2 |U_{\beta i}|^2$$

Flavor composition

Astrophysical neutrino sources

Earth

► Different processes yield different ratios of neutrinos of each flavor: $(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{tot}$

Flavor ratios at Earth ($\alpha = e, \mu, \tau$):

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\nu_{\beta}\to\nu_{\alpha}} f_{\beta,\mathrm{S}}$$

Flavor composition

Astrophysical neutrino sources

 $f_{\alpha,\oplus} = \sum P_{\nu_{\beta} \to \nu_{\alpha}} f_{\beta,\mathrm{S}}$

 $\beta = e.\mu.\tau$

► Different processes yield different ratios of neutrinos of each flavor: $(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{tot}$

Flavor ratios at Earth ($\alpha = e, \mu, \tau$):

Earth

Why are flavor ratios useful?

▶ The normalization of the flux is uncertain – but it cancels out in flavor ratios:

α-flavor ratio at Earth ($f_{\alpha, \oplus}$) = $\frac{\text{Flux at Earth of } \nu_{\alpha} (\alpha = e, \mu, \tau)}{\text{Sum of fluxes of all flavors}}$

Ratios remove systematic uncertainties common to all flavors

Flavor ratios are useful in astrophysics and particle physics

Note: Ratios are for $\nu + \overline{\nu}$ *, since neutrino telescopes cannot tell them apart*

Reading a ternary plot

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it: Follow the tilt of the tick marks, *e.g.*,

 $(e:\mu:\tau) = (0.30:0.45:0.25)$

Full π decay chain (1/3:2/3:0)_s

Note: v and \overline{v} are (so far) indistinguishable in neutrino telescopes

Full π decay chain (1/3:2/3:0)_s

Muon damped (0:1:0)s

Neutron decay (1:0:0)s

Note: v and \overline{v} are (so far) indistinguishable in neutrino telescopes

All possible flavor ratios at the sources

+

Vary oscillation parameters within 3σ

Note: v and \overline{v} are (so far) indistinguishable in neutrino telescopes

Neutrino detection

Neutrino-nucleon deep inelastic scattering What you see Beneath the hood

(Plus the equivalent neutral-current process (Z-exchange))

Giunti & Kim, Fundamentals of Neutrino Physics & Astrophysics

High-energy neutrinos are attenuated inside Earth

High-energy neutrinos are attenuated inside Earth

High-energy neutrinos are attenuated inside Earth

How does IceCube see neutrinos?

Two types of fundamental interactions ...

Contained vs. uncontained events

Contained events

Uncontained events

Pro: Clean determination of E_{ν} **Con:** Few events (~100)

Pro: Lots of events (few 10k) **Con:** Uncertain estimates of E_{μ}

IceCube results: Energy spectrum

100+ contained events above 60 TeV (8 yr):

Data is fit well by a single power law:

$$\frac{d\Phi_{\nu+\bar{\nu}}}{dE} = \Phi\left(\frac{E}{100 \text{ TeV}}\right)^{-\gamma} 10^{-18} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$

IceCube results: Energy spectrum

100+ contained events above 60 TeV (8 yr):

Data is fit well by a single power law:

$$\frac{d\Phi_{\nu+\bar{\nu}}}{dE} = \Phi\left(\frac{E}{100 \text{ TeV}}\right)^{-\gamma} 10^{-18} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$

IceCube results: Arrival directions

Distribution of arrival directions (8 yr) is compatible with an isotropic distribution of sources:

IceCube results: Flavor composition

Compare number of tracks (ν_μ)
vs. showers (all flavors)

► Best fit:
$$(f_e: f_\mu: f_\tau)_{\oplus} = (0.49: 0.51: 0)_{\oplus}$$

Compatible with standard source compositions

 Lots of room for improvement: more statistics, better flavor-tagging Li, MB, Beacom PRL 2019

IceCube results: Flavor composition

There are 2 ν_{τ} candidate events which change the flavor composition:

Looking for the sources

Three Strategies to Reveal Sources Using TeV–PeV ν

Gamma-ray bursts and blazars – *not* dominant Gamma-ray bursts Blazars

Gamma-ray bursts and blazars – *not* dominant Gamma-ray bursts Blazars

< 1% contribution to diffuse flux

< 27% contribution to diffuse flux

... but we have seen *one* blazar neutrino flare!

Recent news: The starburst Seyfert galaxy NGC 1068 is also a potential neutrino source candidate (1908.05993)

Blazar TXS 0506+056:

Joint modeling of the two periods is challenging; see ICRC 2019 talk by Walter Winter

Source discovery potential: today and in the future

Accounts for the observed diffuse v flux (lower/upper edge: rapid/no redshift evolution)

Ackermann, MB et al., Astro2020 Survey (1903.04333) – See also: Silvestri & Barwick, PRD 2010; Murase & Waxman, PRD 2016

GW170817 (NS-NS merger)

▶ Short GRB seen in *Fermi*-GBM, INTEGRAL

08

◇¹⁰

×6

Sileet downsome

69

GW (90% CL)

NGC 4993

Neutrino search by IceCube, ANTARES, and Auger

 \mathbf{X}^3

- ► MeV–EeV neutrinos, 14-day window
- ► Non-detection consistent with off-axis

ANTARES, IceCube, Pierre Auger Collab., ApJL 2017

 75°

 60°

IceCube up-going

ceCube down-going

 45°

300

 15°

 0°

 -15°

-30

-45

-60

The next frontier: UHE neutrinos

Recall the threshold condition for $p\gamma \rightarrow \pi (\rightarrow \nu)$:

$$E_p \cdot E_{\gamma_{\text{target}}} = 0.2 \text{ GeV}^2$$

The proton fraction is the driver

Ahlers & Halzen, PRD 2012

- Cosmogenic v production is mainly due to UHECR protons
- Consider a mixed mass composition

Proton fraction:

$$f_p = 1 - \left(1 + \left(\frac{E}{10^{19} \text{ eV}}\right)^{-\alpha}\right)^{-1}$$

▶ Nuclei fraction: $f_A = 1 - f_p$

The proton fraction is the driver

Ahlers & Halzen, PRD 2012

- Cosmogenic v production is mainly due to UHECR protons
- Consider a mixed mass composition

Proton fraction:

$$f_p = 1 - \left(1 + \left(\frac{E}{10^{19} \text{ eV}}\right)^{-\alpha}\right)^{-1}$$

▶ Nuclei fraction: $f_A = 1 - f_p$

Updated cosmogenic v fluxes

 Predictions from fits to 2017 Auger UHECR spectrum & composition

[Pierre Auger Collab., JCAP 2017]

- Simultaneously vary (CRPropa):
 Spectral index γ (*i.e.*, E^{-γ})
 Source evolution m (*i.e.*, (1+z)^m)
 Maximum rigidity P (*i.e.* σ^{R/R}gut)
 - Maximum rigidity R_{cut} (*i.e.*, $e^{-R/R_{\text{cut}}}$)

• Best-fit values: $\gamma = 1, m = -1.5, \log_{10}(R_{cut}/V) = 18.69$

The ν fluxes are ~10 × lower, mainly due to low R_{cut} and negative m

Alves Batista *et al., JCAP* 2019 See also: Heinze *et al., ApJ* 2019

Plot from GRAND Collab., Sci. China Phys. Mech. Astron. 2020

Updated cosmogenic v fluxes

 Predictions from fits to 2017 Auger UHECR spectrum & composition

[Pierre Auger Collab., JCAP 2017]

- Simultaneously vary (CRPropa):
 Spectral index γ (*i.e.*, E^{-γ})
 Source evolution m (*i.e.*, (1+z)^m)
 Maximum rigidity P (*i.e.* σ^{R/Rat}
 - Maximum rigidity R_{cut} (*i.e.*, $e^{-R/R_{\text{cut}}}$)

• Best-fit values: $\gamma = 1, m = -1.5, \log_{10}(R_{cut}/V) = 18.69$

The ν fluxes are ~10 × lower, mainly due to low R_{cut} and negative m

Alves Batista *et al., JCAP* 2019 See also: Heinze *et al., ApJ* 2019

Plot from GRAND Collab., Sci. China Phys. Mech. Astron. 2020

How to detect UHE neutrinos

Today

- In-ice Cherenkov: IceCube
- Horizontal showers: Auger
- ► In-ice radio: ARA, ARIANNA
- ► Ice & air radio: ANITA
- ► Fluorescence: MAGIC, Ashra

Next decade

- In-ice Cherenkov: IceCube-Gen2
- In-water Cherenkov: KM3NeT, Baikal-GVD
- Horizontal showers: AugerPrime
- ► Fluorescence: POEMMA?, Trinity?
- ► In-ice radio: RNO?
- Atmospheric radio: TAROGE?, BEACON?, GRAND?

What are you taking home?

- Cosmic TeV–PeV neutrinos are firmly detected: Powerful probes of the non-thermal Universe and high-energy particle physics
- ► We have detected *one* source but it is challenging to explain it
- Still unknown, but getting there:
 - Where do most neutrinos come from?
 - ► What are, precisely, their spectrum, arrival directions, flavor composition?

Exciting prospects: larger statistics, better reconstruction, higher energies

More?

► Astro2020: Fundamental physics with high-energy cosmic neutrinos, 1903.04333

► Astro2020: Astrophysics uniquely enabled by observations of high-energy cosmic neutrinos, 1903.04334

Backup slides

Particle physics with high-energy cosmic v

Fundamental physics with HE cosmic neutrinos

► Numerous new-physics effects grow as ~ $\kappa_n \cdot E^n \cdot L$

So we can probe $\kappa_n \sim 4 \cdot 10^{-47} (E/\text{PeV})^{-n} (L/\text{Gpc})^{-1} \text{PeV}^{1-n}$

► Improvement over current limits: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$

Fundamental physics can be extracted from four neutrino observables:

- Spectral shape
- Angular distribution
- Flavor composition
- Timing

Fundamental physics with HE cosmic neutrinos

► Numerous new-physics effects grow as ~ $\kappa_n \cdot E^n \cdot L$ $\begin{cases}
 n = -1: \text{ neutrino decay} \\
 n = 0: \text{ CPT-odd Lorentz violation} \\
 n = +1: \text{ CPT-even Lorentz violation}
\end{cases}$

► So we can probe $\kappa_n \sim 4 \cdot 10^{-47} (E/PeV)^{-n} (L/Gpc)^{-1} PeV^{1-n}$

► Improvement over current limits: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$

Fundamental physics can be extracted from four neutrino observables:

- Spectral shape
- Angular distribution
- ► Flavor composition
- ► Timing

Fundamental physics with HE cosmic neutrinos

► Numerous new-physics effects grow as ~ $\kappa_n \cdot E^n \cdot L$ $\begin{cases}
 n = -1: \text{ neutrino decay} \\
 n = 0: \text{ CPT-odd Lorentz violation} \\
 n = +1: \text{ CPT-even Lorentz violation}
\end{cases}$

► So we can probe $\kappa_n \sim 4 \cdot 10^{-47} (E/PeV)^{-n} (L/Gpc)^{-1} PeV^{1-n}$

► Improvement over current limits: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$

Fundamental physics can be extracted from four neutrino observables:

Spectral shape ► Timing

In spite of Angular distribution
 Flavor composition
 In spice of poor energy, angular, flavor reconstruction & astrophysical unknowns

.Heavy relics DM annihilation. DM decay.	•Sterile v	• DM- orentz+CPT violation ong-range interactions et vv_interactions Effective	•v interaction •DE-v interaction on Neutrino decay. fons• Supersymmetry• e operators.	
	Boosted DM• •NSI •Sup	•Leptoquarks Extra dimensions erluminal v "M	s. onopoles	

Note: Not an exhaustive list

Note: Not an exhaustive list

Standard expectation: Power-law energy spectrum

Standard expectation: Isotropy (for diffuse flux)

Standard expectation: Isotropy (for diffuse flux)

Standard expectation: Power-law energy spectrum **Standard expectation:** Isotropy (for diffuse flux)

Standard expectation: ν and γ from transients arrive simultaneously

Note: Not an exhaustive list

Standard expectation: Equal number of ν_e , ν_μ , ν_τ

More: 1907.08690 Argüelles, **MB**, Kheirandish, Palomares-Ruiz, Salvadó, Vincent **Standard expectation:** Power-law energy spectrum **Standard expectation:** Isotropy (for diffuse flux)

Standard expectation: ν and γ from transients arrive simultaneously

Note: Not an exhaustive list

Standard expectation: Equal number of v_e , v_μ , v_τ

More: 1907.08690 Argüelles, MB, Kheirandish, Palomares-Ruiz, Salvadó, Vincent

Constraints from the gamma-ray background

- Production via *pp*: ν and gamma-ray spectra follow the CR spectrum E^{-Γ}
- Gamma-ray interactions on the CMB make them pile up at GeV
- ► *Fermi* gamma-ray background is not exceeded only if $\Gamma < 2.2$
- ► But IceCube found $\Gamma = 2.5-2.7$
- Therefore, production via *pp* is disfavored between 10–100 TeV

Neutrino–UHECR angular correlation?

No significant correlation with UHECRs ($<3.3\sigma$)

A null neutrino-UHECR correlation *makes sense*

- ► UHECRs trace sources within $\lambda_{GZK} \approx 100 \text{ Mpc}$
- ▶ Neutrinos come from anywhere inside the Hubble horizon $D_{\rm H} \approx 4 \, \rm Gpc$
- ► So the maximum possible correlation is $\frac{\lambda_{\text{GZK}}}{D_{\text{H}}} \approx 2.5\%$
- Current number of IceCube high-energy starting tracks (HESE): ~25
- ► ∴ Expected UHECR correlation with only ~1 neutrino
- Signal weakened by magnetic deflection, angular resolution, *etc.*

Grand-unified v–UHECR–gamma-ray model

- Black-hole jets in galaxy clusters accelerate cosmic rays
- UHECRs make ν and γ in the magnetized cluster medium
- ► UHECRs above 0.1 EeV escape
- Consistent w/ observed UHECR spectrum, composition, isotropy
- Explains IceCube neutrinos
- Explains non-blazar Fermi EGB

PeV neutrino sources in the Milky Way?

Candidates for full or partial contribution:

- Diffuse Galactic gamma-ray emission
- Unidentified gamma-ray sources
- Fermi bubbles
- Supernova remnants
- Pulsars
- Microquasars
- Sagitarius A*
- Galactic halo
- Heavy dark matter decay

HESE 3yr with $E_{dep} > 60$ TeV, $n_{tot} = 20$, $\hat{f}_{iso} = 0.81$, $\lambda = 0.74$

IceCube, ApJ 2017

A feel for the in-Earth attenuation

Earth matter density

(Preliminary Reference Earth Model)

Neutrino-nucleon cross section

A feel for the in-Earth attenuation

- Fold in astrophysical unknowns (spectral index, normalization)
- Compatible with SM predictions
- Still room for new physics
- ► Today, using IceCube:
 - Extracted from ~60 showers in 6 yr
 - Limited by statistics
- ► Future, using IceCube-Gen2:
 - ► × 5 volume \Rightarrow 300 showers in 6 yr
 - ► Reduce statistical error by 40%

Cross sections from: MB & Connolly PRL 2019 IceCube, Nature 2017

UHE uncertainties can be smaller: Cooper-Sarkar, Mertsch, Sarkar *et al.*, *JHEP* 2011

- Fold in astrophysical unknowns (spectral index, normalization)
- Compatible with SM predictions
- Still room for new physics
- ► Today, using IceCube:
 - Extracted from ~60 showers in 6 yr
 - Limited by statistics
- ► Future, using IceCube-Gen2:
 - ► × 5 volume \Rightarrow 300 showers in 6 yr
 - ► Reduce statistical error by 40%

Cross sections from: MB & Connolly PRL 2019 IceCube, Nature 2017

MB & A. Connolly *PRL* 2019 See also: IceCube, *Nature* 2017

The fine print

- ▶ High-energy v's: astrophysical (isotropic) + atmospheric (anisotropic)
 ⇒ We take into account the shape of the atmospheric contribution
- The shape of the astrophysical ν energy spectrum is still uncertain \mapsto We take a $E^{-\gamma}$ spectrum in *narrow* energy bins
- ► NC showers are sub-dominant to CC showers, but they are indistinguishable → Following Standard-Model predictions, we take $\sigma_{\rm NC} = \sigma_{\rm CC}/3$
- ► IceCube does not **distinguish** ν from $\overline{\nu}$, and their cross-sections are different \mapsto We assume equal fluxes, expected from production via pp collisions \mapsto We assume the avg. ratio $\langle \sigma_{\nu N} / \overline{\sigma}_{\nu N} \rangle$ in each bin known, from SM predictions
- ► The flavor composition of astrophysical neutrinos is still uncertain
 → We assume equal flux of each flavor, compatible with theory and observations

Tidal disruption events

Solar-mass star disrupted by SMBH (>10⁵ M_{\odot})

~50% of the debris bound to the SMBH

NASA ILLUSTRATION

Tidal disruption events

- Mid-to-heavy star chemical composition might explain Auger composition
- Particles produced in internal collisions in jet (only 2 jetted TDEs seen so far)
- ▶ Inject ¹⁴N and model nuclear cascades in jet
- ► TDEs follow the redshift evolution of SMBHs
- Fit to Auger UHECR spectrum $-(1+z)^{-3}$

See also: Lunardini & Winter, PRD 2017; Dai & Fang, MNRAS 2017; Guépin et al., 1711.11274; Zhang, Murase, Oikonomou, Li, PRD 2017; Senno, Murase, Meszaros, ApJ 2017 Biehl, Boncioli, Lunardini, Winter, 1711.03555

Tidal disruption events

- Mid-to-heavy star chemical composition might explain Auger composition
- Particles produced in internal collisions in jet (only 2 jetted TDEs seen so far)
- ► Inject ¹⁴N and model nuclear cascades in jet
- TDEs follow the redshift evolution of SMBHs
- ► Fit to Auger UHECR spectrum + composition

 $\sim (1+z)^{-3}$

See also: Lunardini & Winter, PRD 2017; Dai & Fang, MNRAS 2017; Guépin et al., 1711.11274; Zhang, Murase, Oikonomou, Li, PRD 2017; Senno, Murase, Meszaros, ApJ 2017

Diffuse flux of neutrinos from GRBs

- ► How do we estimate it?
- Compute the expected v fluence from a sample of N_{obs} observed GRBs
- Stack the fluences to obtain the total F_{ν}
- Quasi diffuse flux:

$$\phi_{\nu}(E_{\nu}) = F_{\nu}(E_{\nu}) \frac{1}{4\pi} \frac{1}{N_{\text{obs}}} \frac{667 \text{ bursts}}{\text{yr}}$$

$$(N_{\text{obs}} = 117 \text{ in the plot})$$

Are GRBs still good UHECR source candidates?

High-luminosity bursts: Not so much
Low-luminosity bursts: Yes!

	HL GRBs	LL GRBs
Luminosity (erg s ⁻¹)	$> 10^{49}$	$< 10^{49}$
Rate (Gpc ⁻³ yr ⁻¹)	1	300 (predicted)
Survival of heavy nuclei in jet?	Unlikely	Likely
Can explain IceCube v ?	No	Yes

Are GRBs still good UHECR source candidates?

High-luminosity bursts: Not so much
Low-luminosity bursts: Yes!

	HL GRBs	LL GRBs
Luminosity (erg s ⁻¹)	> 10 ⁴⁹	$< 10^{49}$
Rate (Gpc ⁻³ yr ⁻¹)	1	300 (predicted)
Survival of heavy nuclei in jet?	Unlikely	Likely
Can explain IceCube v ?	No	Yes

Are GRBs still good UHECR source candidates?

Neutrino zenith angle distribution

Radio emission: geomagnetic and Askaryan Geomagnetic Askaryan

- Time-varying transverse current
- Linearly polarized parallel to Lorentz force
- Dominant in air showers

- ► Time-varying negative-charge ~20% excess
- Linearly polarized towards axis
- Sub-dominant in air showers

Radio emission: geomagnetic and Askaryan

Radio-detection of UHE neutrinos in ice

- Radio attenuation length in ice: few km (vs. 100 m for light)
- Larger monitored volume than IceCube
- ► ARA, ARIANNA: antennas buried in ice
- ANITA: antennas mounted on a balloon
 - No ν detected yet

(But UHECRs detected regularly!)

Astrophysical UHE neutrinos

- Diffuse flux of astrophysical UHE v may exceed the cosmogenic flux
- First UHE ν seen may be astrophysical $\frac{1}{2}$
- A few possibilities:
 - ► Galaxy clusters with central sources Murase, Inoue, Nagataki, *ApJ* 2008 Fang & Murase, *Nat. Phys.* 2017
 - Fast-spinning newborn pulsars Fang, Kotera, Murase, Olinto, PRD 2014
 - Active galactic nuclei Murase, Neutrino astronomy, 1511.01590
 - GRB afterglows Murase, PRD 2007

Plot by Ke Fang from GRAND: Science and Design

The Cosmogenic Neutrino Floor

- In a nucleus A of energy E, each nucleon has energy E/A
- Minimal cosmogenic v flux comes from maximizing nuclei survival
- *I.e.,* from minimizing *p* production from photo-disintegration
- ▶ ν fluxes from UHECR nuclei (> 4 EeV) $\sum_{\mathbb{R}^{n}}$ are presently beyond reach

Identifying UHE ν Point Sources

- Look for event-count excesses within the point-spread-function [Fang et al., JCAP 2016]
- Density n_s of equal-luminosity sources with uniform distribution (til 2 Gpc)
- ► E^{-2} point-source ν spectrum at EeV
- All-sky EeV point-source flux normalized to ~10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹
- ► Event rate between 1–10 EeV

Assuming gamma rays come from electron synchrotron:

$$B \approx \begin{cases} 10^5 \text{ G in internal shocks } (10^8 - 10^{10} \text{ km}) \\ 1 \text{ G } \text{ in afterglow } (10^{11} - 10^{13} \text{ km}) \end{cases}$$

Assuming gamma rays come from electron synchrotron:

$$B \approx \begin{cases} 10^5 \text{ G in internal shocks } (10^8 - 10^{10} \text{ km}) \\ 1 \text{ G } \text{ in afterglow } (10^{11} - 10^{13} \text{ km}) \end{cases}$$

Assuming gamma rays come from electron synchrotron:

 $B \approx \begin{cases} 10^5 \text{ G in internal shocks } (10^8 - 10^{10} \text{ km}) \\ 1 \text{ G } & \text{in afterglow } (10^{11} - 10^{13} \text{ km}) \end{cases}$

Hillas criterion:

Larmor radius < Acceleration region

► To accelerate protons to 10¹¹ GeV:

$$B \gtrsim 3 \cdot 10^{12} \left(\frac{\mathrm{km}}{R}\right) \mathrm{G}$$

A.M. Hillas, Ann. Rev. Astron. Astrophys. 1984; S. Hümmer et al., Astropart. Phys. 2010 J. Granot et al., Space Sci. Rev. 2015 S. Hümmer et al., Astropart. Phys. 2010

Assuming gamma rays come from electron synchrotron:

 $B \approx \begin{cases} 10^5 \text{ G in internal shocks } (10^8 - 10^{10} \text{ km}) \\ 1 \text{ G } & \text{in afterglow } (10^{11} - 10^{13} \text{ km}) \end{cases}$

Hillas criterion:

Larmor radius < Acceleration region

► To accelerate protons to 10¹¹ GeV:

$$B \gtrsim 3 \cdot 10^{12} \left(\frac{\mathrm{km}}{R}\right) \mathrm{G}$$

A.M. Hillas, Ann. Rev. Astron. Astrophys. 1984; S. Hümmer et al., Astropart. Phys. 2010 J. Granot et al., Space Sci. Rev. 2015 S. Hümmer et al., Astropart. Phys. 2010

Two requirements:

- ► High variability (~ms)
- ► Abundant available energy (> 10⁵¹ erg)

Two requirements:

High variability (~ms)
 Abundant available energy (> 10⁵¹ erg)
 Powered by compact objects with high angular momentum

Two requirements:

- High variability (~ms)
 Abundant available energy (> 10⁵¹ erg)
 Powered by compact objects with high angular momentum

Example 1: Magnetars **Rotational energy:**

$$E_{\rm rot} = 5 \cdot 10^{50} \left(\frac{\omega}{1 \text{ kHz}}\right)^2 \text{ erg}$$

Two requirements:

- High variability (~ms)
 Abundant available energy (> 10⁵¹ erg)
 Powered by compact objects with high angular momentum

Example 1: Magnetars Rotational energy:

$$E_{\rm rot} = 5 \cdot 10^{50} \left(\frac{\omega}{1 \text{ kHz}}\right)^2 \text{ erg}$$

Example 2: Accreting NS or BH Potential energy released by accreting matter:

$$E_{\rm acc} = 3.7 \cdot 10^{51} \left(\frac{m_{\rm acc}}{0.01 M_{\odot}} \right) \ {\rm erg}$$

Two requirements:

- ► High variability (~ms)
- High variability (~ms)
 Abundant available energy (> 10⁵¹ erg)
 Powered by compact objects with high angular momentum

Example 1: Magnetars Rotational energy: $E_{\rm rot} = 5 \cdot 10^{50} \left(\frac{\omega}{1 \text{ kHz}}\right)^2 \text{ erg}$ Convert a fraction of Example 2: Accreting NS or BH this into jet energy Potential energy released by accreting matter: $E_{\rm acc} = 3.7 \cdot 10^{51} \left(\frac{m_{\rm acc}}{0.01 \, M_{\odot}} \right) \, {\rm erg}$

Unified model from optical to gamma-ray emission —

S. Guiriec *et al.*, *ApJL* 2016

- ► Four diffuse components:
 - Residual atmospheric (0.2–0.5 PeV): Conv. ($E^{-3.7}$) & prompt ($E^{-2.7}$) ν + muons
 - ► Galactic ν (\leq PeV): pp with disc gas ($E^{-2.6}$), confined to $|b| < 5^{\circ}$, $|l| < 45^{\circ}$
 - Extragalactic v from pp, Ap: á la starbursts (E⁻²)
 - Extragalactic ν from pγ, Aγ:
 á la TDE (peaked around a few PeV)
- Simultaneous fit to HESE showers, tracks, through-going muons (TGM)

► Four diffuse components:

- ► Residual atmospheric (0.2–0.5 PeV):
 - Conv. ($E^{-3.7}$) & prompt ($E^{-2.7}$) ν + muons
- ► Galactic ν (\leq PeV): pp with disc gas ($E^{-2.6}$), confined to $|b| < 5^{\circ}$, $|l| < 45^{\circ}$
- Extragalactic v from pp, Ap: á la starbursts (E⁻²)
- Extragalactic ν from pγ, Aγ:
 á la TDE (peaked around a few PeV)
- Simultaneous fit to HESE showers, tracks, through-going muons (TGM)

What lies beyond? *Take your pick*

- High-energy effective field theories
 - Violation of Lorentz and CPT invariance
 [Barenboim & Quigg, PRD 2003; MB, Gago, Peña-Garay, JHEP 2010; Kostelecky & Mewes 2004]
 - Violation of equivalence principle [Gasperini, PRD 1989; Glashow et al., PRD 1997]
 - Coupling to a gravitational torsion field [De Sabbata & Gasperini, Nuovo Cim. 1981]
 - Renormalization-group-running of mixing parameters [MB, Gago, Jones, JHEP 2011]
 - General non-unitary propagation [Ahlers, MB, Mu, PRD 2018]
- Active-sterile mixing [Aeikens et al., JCAP 2015; Brdar, JCAP 2017]
- Flavor-violating physics
 - New neutrino-electron interactions

[MB & Agarwalla, PRL 2019]

New *vv* interactions

[Ng & Beacom, PRD 2014; Cherry, Friedland, Shoemaker, 1411.1071; Blum, Hook, Murase, 1408.3799]

Toho Company Ltd.

▶ ...

Flavor – What is it good for?

Trusting particle physics and learning about astrophysics

Trusting astrophysics and learning about particle physics

IceCube flavor composition

Today IceCube

► Best fit:

 $(f_e:f_\mu:f_\tau)_{\oplus} = (0.49:0.51:0)_{\oplus}$

- Compatible with standard source compositions
- Hints of one v_{τ} (not shown)

Near future (2022) IceCube upgrade

In 10 years (2030s)

IceCube-Gen2

Assuming production by the full pion decay chain

Plus possibly better flavor-tagging, *e.g.*, muon and neutron echoes [Li, MB, Beacom *PRL* 2019]

New physics – High-energy effects 0.0.1.0For n = 0 $H_{\text{tot}} = H_{\text{std}} + H_{\text{NP}}$ (similar for n = 1) $H_{\text{std}} = \frac{1}{2F} U_{\text{PMNS}}^{\dagger} \operatorname{diag} \left(0, \Delta m_{21}^2, \Delta m_{31}^2\right) U_{\text{PMNS}}$ $H_{\rm NP} = \sum \left(\frac{E}{\Lambda_n}\right)^n U_n^{\dagger} \operatorname{diag}\left(O_{n,1}, O_{n,2}, O_{n,3}\right) U_n$ 0.4This can populate *all* of the triangle – 0.6 • Use current atmospheric bounds on $O_{n,i}$: $O_0 < 10^{-23} \text{ GeV}, O_1/\Lambda_1 < 10^{-27} \text{ GeV}$ 0.8 Sample the unknown new mixing angles 0.2 0.40.0 $lpha_{e}^{\,\oplus}$

0.8

0.6

(1:2:0)

(1:0:0)

(0:1:0)

(0:0:1)

0.4

 \mathcal{L}

0.2

1.0

8.0

0.6

New physics – High-energy effects 0.0.1.0For n = 0 $H_{\text{tot}} = H_{\text{std}} + H_{\text{NP}}$ (similar for n = 1) (1:2:0)(1:0:0) $H_{\text{std}} = \frac{1}{2F} U_{\text{PMNS}}^{\dagger} \operatorname{diag} \left(0, \Delta m_{21}^2, \Delta m_{31}^2\right) U_{\text{PMNS}}$ 8.0 (0:1:0)(0:0:1) $H_{\rm NP} = \sum \left(\frac{E}{\Lambda_n}\right)^n U_n^{\dagger} \operatorname{diag}\left(O_{n,1}, O_{n,2}, O_{n,3}\right) U_n$ 0.4 0.6 2 E ® This can populate *all* of the triangle – 0.6 0.4• Use current atmospheric bounds on $O_{n,i}$: $O_0 < 10^{-23}$ GeV, $O_1/\Lambda_1 < 10^{-27}$ GeV 0.8 0.2Sample the unknown new mixing angles 0.00.2 0.40.6 0.8 0.0 1.0 α_{e}^{\oplus} See also: Rasmusen et al., PRD 2017; MB, Beacom, Winter PRL 2015; MB, Gago, Peña-Garay JCAP 2010;

Bazo, **MB**, Gago, Miranda *IJMPA* 2009; + many others

Using unitarity to constrain new physics

 $H_{tot} = H_{std} + H_{NP}$

New mixing angles unconstrained

- Use unitarity $(U_{NP}U_{NP}^{\dagger} = 1)$ to bound all possible flavor ratios at Earth
- Can be used as prior in new-physics searches in IceCube

Bonus: Measuring the inelasticity $\langle y \rangle$

► Inelasticity in CC ν_{μ} interaction $\nu_{\mu} + N \rightarrow \mu + X$: $E_X = y E_{\nu}$ and $E_{\mu} = (1-y) E_{\nu} \Rightarrow y = (1 + E_{\mu}/E_X)^{-1}$

► The value of *y* follows a distribution $d\sigma/dy$

In a HESE starting track:

$$E_X = E_{sh}$$
 (energy of shower)
 $E_{\mu} = E_{tr}$ (energy of track)
 $y = (1 + E_{tr}/E_{sh})^{-1}$

► New IceCube analysis:

- ► 5 years of starting-track data (2650 tracks)
- Machine learning separates shower from track
- Different *y* distributions for *v* and \overline{v}

IceCube, PRD 2019

Bonus: Measuring the inelasticity $\langle y \rangle$

► Inelasticity in CC ν_{μ} interaction $\nu_{\mu} + N \rightarrow \mu + X$: $E_X = y E_{\nu}$ and $E_{\mu} = (1-y) E_{\nu} \Rightarrow y = (1 + E_{\mu}/E_X)$

• The value of *y* follows a distribution $d\sigma/dy$

► In a HESE starting track: $E_X = E_{sh}$ (energy of shower) $E_\mu = E_{tr}$ (energy of track) $y = (1 + E_{tr}/E_{sh})^{-1}$

► New IceCube analysis:

- ► 5 years of starting-track data (2650 tracks)
- Machine learning separates shower from track
- Different *y* distributions for v and \overline{v}

IceCube, PRD 2019

New physics in the spectral shape: $\nu\nu$ interactions

New physics in the spectral shape: $\nu\nu$ interactions

New physics in the spectral shape: $\nu\nu$ interactions

New physics in the spectral shape: vv interactions

New physics in the angular distribution: ν -DM interactions

Interaction between astrophysical neutrinos and the Galactic dark matter profile -

Expected: Fewer neutrinos coming from the Galactic Center

Observed: Isotropy

Argüelles, Kheirandish, Vincent, PRL 2017

New physics in the angular distribution: ν -DM interactions

Interaction between astrophysical neutrinos and the Galactic dark matter profile -

Observed: Isotropy

Argüelles, Kheirandish, Vincent, PRL 2017

New physics in the energy & angular distribution

Lorentz invariance violation – Hamiltonian: $H \sim m^2/(2E) + a^{(3)} - E \cdot c^{(4)} + E^2 \cdot a^{(5)} - E^3 \cdot c^{(6)}$

New physics in timing — TeV–PeV

Multiple secret vv scatterings may delay the arrival of neutrinos from a transient

See also: Alcock & Hatchett, ApJ 1978

New physics in timing — TeV–PeV

See also: Alcock & Hatchett, ApJ 1978

Neutrino zenith angle distribution

Using through-going muons instead

- ► Use ~10⁴ through-going muons
- Measured: dE_{μ}/dx
- Inferred: $E_{\mu} \approx dE_{\mu}/dx$
- From simulations (uncertain): most likely E_v given E_µ
- ► Fit the ratio σ_{obs}/σ_{SM} 1.30^{+0.21}_{-0.19}(stat.)^{+0.39}_{-0.43}(syst.)
- All events grouped in a single energy bin 6–980 TeV

Flavor composition – a few source choices

Flavor composition – a few source choices

Side note: Improving flavor-tagging using *echoes*

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_{τ} –

Side note: Improving flavor-tagging using echoes

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_{τ} –

Side note: Improving flavor-tagging using echoes

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_{τ} –

Hadronic vs. electromagnetic showers

Energy dependence of the flavor composition?

Different neutrino production channels accessible at different energies -

TP13: *p*γ model, target photons from electron-positron annihilation [Hümmer+, Astropart. Phys. 2010]
 Will be difficult to resolve [Kashti, Waxman, PRL 2005; Lipari, Lusignoli, Meloni, PRD 2007]

... Observable in IceCube-Gen2?

Flavor content of neutrino mass eigenstates

Flavor content for every allowed combination of mixing parameters –

Mauricio Bustamante (Niels Bohr Institute)

Earth

Earth

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |\mathbf{U}_{\alpha 1}|^2$, for

Any value of mixing parameters; and Any flavor ratios at the sources

MB, Beacom, Murase, PRD 2017

(Assume equal lifetimes of ν_2, ν_3)

Fraction of v_2 , v_3 remaining at Earth

Find the value of **D** so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; andAny flavor ratios at the sources

(Assume equal lifetimes of $\nu_{2'} \nu_{3}$)

Fraction of v_2 , v_3 remaining at Earth

MB, Beacom, Murase, PRD 2017

Baerwald, MB, Winter, JCAP 2012

Find the value of **D** so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; and
Any flavor ratios at the sources

(Assume equal lifetimes of $\nu_{2'} \nu_{3}$)

Fraction of v_2 , v_3 remaining at Earth

MB, Beacom, Murase, PRD 2017

Baerwald, MB, Winter, JCAP 2012

Find the value of **D** so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; and
Any flavor ratios at the sources

(Assume equal lifetimes of $\nu_{2'}$, ν_{3})

Measuring the neutrino lifetime

Fraction of v_2 , v_3 remaining at Earth

MB, Beacom, Murase, PRD 2017

Baerwald, MB, Winter, JCAP 2012

Find the value of **D** so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; andAny flavor ratios at the sources

(Assume equal lifetimes of $\nu_{2'} \nu_{3}$)

Measuring the neutrino lifetime

Fraction of v_2 , v_3 remaining at Earth

MB, Beacom, Murase, PRD 2017

Baerwald, MB, Winter, JCAP 2012

Find the value of D so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; andAny flavor ratios at the sources

(Assume equal lifetimes of $\nu_{2'} \nu_{3}$)

Measuring the neutrino lifetime

Fraction of v_2 , v_3 remaining at Earth

Find the value of **D** so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; and
Any flavor ratios at the sources

(Assume equal lifetimes of $\nu_{2'}$, ν_{3})

Two classes of new physics

- ▶ Neutrinos propagate as an incoherent mix of ν_1 , ν_2 , ν_3
- Each one has a different flavor content:

Flavor ratios at Earth are the result of their combination

► New physics may:

- Only reweigh the proportion of each v_i reaching Earth (*e.g.*, v decay)
- ▶ Redefine the propagation states (*e.g.*, Lorentz-invariance violation)

Two classes of new physics

- ▶ Neutrinos propagate as an incoherent mix of ν_1 , ν_2 , ν_3
- Each one has a different flavor content:

Flavor ratios at Earth are the result of their combination

New physics may:

- Only reweigh the proportion of each v_i reaching Earth (*e.g.*, v decay)
- ▶ Redefine the propagation states (*e.g.*, Lorentz-invariance violation)

Not to scale

Not to scale

Mystery ANITA events – First UHE ν detected?

- Two upgoing, unflipped-polarity showers:
 ANITA-1 (2006): 20°±0.3° dec., 0.60±0.4 EeV
 ANITA-3 (2014): 38°±0.3° dec., 0.56±0.2 EeV
- ► Estimated background rate: < 10⁻² events
- Were these showers due to v_{τ} ? *Unlikely*
- Optical depth to νN interactions at EeV: $\frac{\text{Chord inside Earth}}{\text{Interaction length in Earth}} = \frac{7000 \text{ km}}{390 \text{ km}} = 18$
- Flux is suppressed by $e^{-18} = 10^{-8}$

Mystery ANITA events – First UHE ν detected?

- Two upgoing, unflipped-polarity showers:
 ANITA-1 (2006): 20°±0.3° dec., 0.60±0.4 EeV
 ANITA-3 (2014): 38°±0.3° dec., 0.56±0.2 EeV
- ► Estimated background rate: < 10⁻² events
- Were these showers due to v_{τ} ? *Unlikely*
- Optical depth to νN interactions at EeV: $\frac{\text{Chord inside Earth}}{\text{Interaction length in Earth}} = \frac{7000 \text{ km}}{390 \text{ km}} = 18$
- Flux is suppressed by $e^{-18} = 10^{-8}$

Mystery ANITA events – First UHE ν detected?

- Two upgoing, unflipped-polarity showers:
 ANITA-1 (2006): 20°±0.3° dec., 0.60±0.4 EeV
 ANITA-3 (2014): 38°±0.3° dec., 0.56±0.2 EeV
- ► Estimated background rate: < 10⁻² events
- Were these showers due to v_{τ} ? *Unlikely*
- Optical depth to νN interactions at EeV: $\frac{\text{Chord inside Earth}}{\text{Interaction length in Earth}} = \frac{7000 \text{ km}}{390 \text{ km}} = 18$
- Flux is suppressed by $e^{-18} = 10^{-8}$

