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Introduction
What is HEJ?

HEJ is a framework for calculating the cross sections of multi-jet
processes, which by making an approximation to the matrix
element, allows for an all-order resummation of the large
logarithms associated with hard, well-separated emissions.
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@ Parton showers tend to underestimate the amount of hard
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@ PDFs are small at large x, so aren't hard emissions
suppressed?

@ Hard emissions are enhanced as rapidity separation increases
by large logarithms of the form Ay ~ In(%)

@ These logarithms can outweigh suppression from PDFs =
these need to be resummed

@ The logarithms are most relevant in the Multi-Regge
Kinematic (MRK) limit, where the rapidities and momenta
satisfy y1 > y» > ... > y, and p;| ~ p;| and where
s> §,’j > p,-i

@ To formulate an approximate matrix element which facilitates

resummation, need to consider which contributions are large
in the MRK limit
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Factorization

@ In the MRK limit some partonic channels are suppressed by
powers of §
@ Channels leading in 5 are known as FKL configurations
e Jets extremal in rapidity have the same flavour as the
Incoming partons
o Internal jets arise from pure gluon emissions
@ Matrix elements for FKL configurations exhibit the nice
property of factorizing into the product of contracted
currents, effective vertices and t-channel poles
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Formulation of the matrix element
Factorization

e For example, the colour and helicity summed/averaged matrix
element for a gQ — n parton process is given by:

IMGo-rge.. go| m”sqo—moll

1 1
' <g52CFA> : <gs2CFA >
ty th—1

T —82Ca
' H ( .S VH(CI/ q/+1)vp(qi:qi+1)>

where S/ 012 = (1, |ulap,) g (21, |v|bh,)
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Formulation of the matrix element

Factorization

e For example, the colour and helicity summed/averaged matrix
element for a gQ — n parton process is given by:

— 1 5
Mg aQ—qg.. gQ| m”sqo—mon

1 1
'<g52CFA >'<g52CFA >
ty th—1

T —82Ca
' H ( .S V/l(q/ q/+1)vp(qi:qi+1)>

where S/ 012 = (1, |ulap,) g (21, |v|bh,)

@ The inclusive m-jet cross section is found by performing the

phase space integral of an explicit sum of real, radiative
corrections.
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Effective field theory

Two cases: Higgs outside (in rapidity) jets, and in-between jets
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e For Higgs outside jets, can define a Higgs+gluon impact
factor - this can be incorporated in the currents formalism
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Effective field theory

Two cases: Higgs outside (in rapidity) jets, and in-between jets
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e For Higgs outside jets, can define a Higgs+gluon impact
factor - this can be incorporated in the currents formalism

@ For Higgs between jets describe Higgs coupling to gluons via
an effective vertex obtained in the infinite top mass limit

@ Absorb vertex into spinor string:

hahy—hy h o
a0 vt (a1, G2) = (L, |1lan,) 8" Vi o, (q1, G1) (21, 02| bp,)



Higgs plus jets
oce

Effective field theory

@ The colour/helicity summed/averaged matix element squared
is then:
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@ The colour/helicity summed/averaged matix element squared
is then:
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@ For the rapidity ordered process gQ — gHgQ we have:
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Finite quark mass corrections

@ The effective field theory works well where there is only one
scale involved (my) - but in our formulation there are scales
which are not always small compared to the top mass =
finite top effects become important

o Fortunately, the previous treatment did not depend on using
the infinite top mass limit

@ To include finite top mass corrections, simply need a more
complicated spinor string:

hoh h1h
St 22 (G, o) = (ap, |1 1ny) by V128,V @Y Ar (a1, G2)

- <3ha|#|1h1><bhb|ﬂ‘2h2>A2(qla q2)

@ Also need to adjust the impact factors in the case of Higgs
outside jets

e Can even include bottom mass (interference) effects in this
way
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Finite quark mass corrections

@ Preliminary results for ud — uHd - large corrections for large
invariant dijet mass
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Summary

e HEJ is a framework for calculating cross sections for processes
involving 2 or more hard jets to all orders in as

@ The dominant partonic channels are found to factorize into
currents and effective vertices

@ This structure facilitates the development of an approximate
matrix element for emissions to all orders

@ These building blocks can be adapted for difference processes,
such as Higgs plus jets

@ We are currently incorporating finite quark mass corrections
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