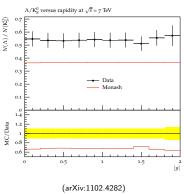
A new Colour Reconnection model within PYTHIA

Jesper Roy Christiansen

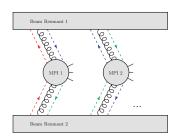
Lund University


October 8-10, 2014 MCnet meeting

Talk overview

- Motivation
- New beam remnant model
- New colour reconnection model
- Conclusion

Motivation


- We want to introduce more of the SU(3) structure from QCD into the description
- Provide a better description of especially Λ production at hadron colliders.

3 / 17

New beam remnant model

- The beam remnant model comes after the perturbative machinery
- Overall idea of the model:
 - A game of conservation laws
 - Add the minimal required amount of extra particles

- Example of two scattered gluons from a proton:

Flavour conservation

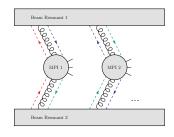
Add two up and one down quark

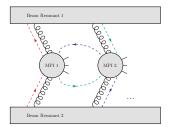
Baryon number conservation

Turn two quarks into a diquark

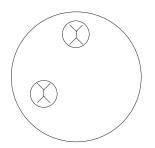

Energy/momentum conservation

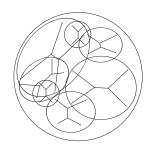
Choose x according to modified PDFs and rescale to match overall momentum conservation


New beam remnant model - colour conservation


Possible colour states for the two gluons:

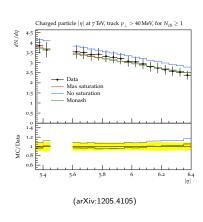
$$\mathbf{8} \otimes \mathbf{8} = \mathbf{27} \oplus \mathbf{10} \oplus \overline{\mathbf{10}} \oplus \mathbf{8} \oplus \mathbf{8} \oplus \mathbf{1}$$


Examples of the 27 and the 8 configurations:

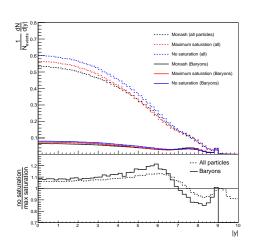


Saturation

Are the partons uncorrelated?

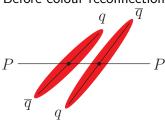


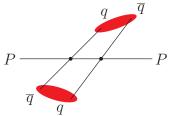
Included as a simple suppression: $\exp(-M/k)$, where M is the multiplet size and k is a free parameter


Comparisons to data

- Relative large x and small $p_{\perp} \Rightarrow$ forward physics
- Comparison to forward TOTEM measurements.
- 10 % difference between no and maximal saturation
- The old model is similar to maximal saturation

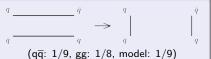
Baryon production


- The new models allow for additional production of junction structures
- Comparison between maximal saturation and no saturation as a function rapidity.
- Only directly produced particles (HadronLevel:decay = off)

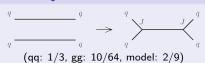

New colour reconnection model

- Colour reconnection allows us to reshuffle the colours before hadronization
- Experimentally observed in average p_⊥ vs multiplicity
- New model relies on two main principles
 - SU(3) colour rules from QCD - tells us which reconnections are allowed
 - minimize λ measure tells us which reconnections are preferred

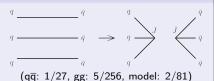
Before colour reconnection

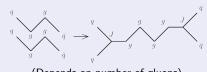


After colour reconnection



Possible reconnections


Ordinary string reconnection


Double junction reconnection

Triple junction reconnection

Zipping reconnection

(Depends on number of gluons)

The λ measure

- The λ -measure is the rapidity span of a string
- For a $q\bar{q}$ dipole: $\lambda = \log(1 + \frac{s}{2m_0^2})$
- Sum over all qq-, qg- and gg-dipoles to get total string length
- Add free parameter for minimum gain for junction structures (allow negative for enhancement)

Generalization of λ -measure $(s\gg m_0^2)$

$$\begin{split} \lambda &= \log(1 + \frac{s}{2m_0^2}) \Rightarrow \\ \lambda &= \log(\frac{s}{2m_0^2}) \ (s \gg m_0^2) \Rightarrow \\ \lambda &= \log(\frac{4E_1E_2}{2m_0^2}) \ (\text{restframe}) \Rightarrow \\ \lambda &= \log(\frac{\sqrt{2}E_1}{m_0}) + \log(\frac{\sqrt{2}E_2}{m_0}) \end{split}$$

Interpret as contributions from each dipole end, similar for junctions except for three legs:

$$\lambda = \log(\frac{\sqrt{2}E_1}{m_0}) + \log(\frac{\sqrt{2}E_2}{m_0}) + \log(\frac{\sqrt{2}E_3}{m_0})$$

To handle
$$(s \sim m_0^2)$$
: $\log(\frac{\sqrt{2}E_1}{m_0}) \rightarrow \log(1 + \frac{\sqrt{2}E_1}{m_0})$

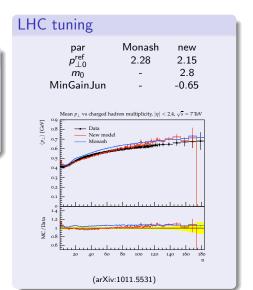
Additional details

- Only local minimization
- Ignore dipoles with invariant mass below m₀
- No annihilation of junctions
 Start with ordinary reconnection
- The hadronization can not handle junction connected with other junctions - need to split them up (see examples)

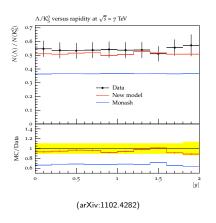
Gluon splitting

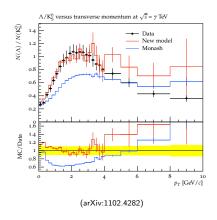
Double junction

Multi junction



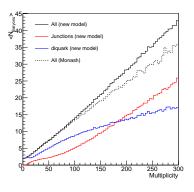
Tuning


LEP tuning

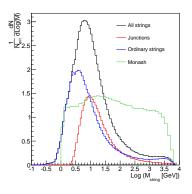

par	Monash	new
$\sigma_{P\perp}$	0.335	0.305
Lund	0.68	0.38
bLund	0.98	0.64
StoUD	0.217	0.19

 First tune iteration, still needs several additional iterations

Comparison to LHC data



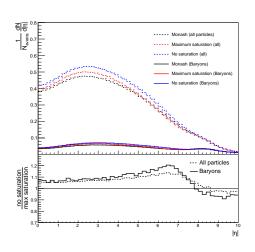
• Can describe Λ/K_s ratios (tuned)


Distinguish new model from old model

- Observables to distinguish junction baryons from diquark baryons
- Best observable found so far can be seen on the right (again hadron decays are turned off)
- Still looking for more observables
- The difference between Monash and the diquark curve can be understood by looking at the masses of the strings

Distinguish new model from old model

- Observables to distinguish junction baryons from diquark baryons
- Best observable found so far can be seen on the right (again hadron decays are turned off)
- Still looking for more observables
- The difference between Monash and the diquark curve can be understood by looking at the masses of the strings



Conclusion

- Only possible to distinguish new beam remnant model from old model in very forward regions
- \bullet The new colour reconnection model can be used to describe the $\Lambda\mbox{-production}$
- Both models will be released along with PYTHIA 8.2
- Future plan:
 - Identify more observables that can distinguish junction baryons from diquark baryons
 - Apply model to the top mass measurement

Baryon production

- The new models allow for additional production of junction structures
- Comparison between maximal saturation and no saturation as a function rapidity.
- Only directly produced particles (HadronLevel:decay = off)

