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The softly broken Z; symmetric 2ZHDM

Z2 symmetry (fwo complex doublets)
D ->D; D,—> —D, Extended to the fermions - no FCNC at tree-level

leads to the potential
V=m}|® 1> +mh| @, —m}, (@D, +h.c)

p p p
+71(<1>jc1>1)2 + 72(¢;¢2)2 + J5(@TD)(DD,) + 14(@I D) (@] D)) + ?5 (@i®,) +h.c. ]

and CP is conserved because VEVs are

0 0
<<I>1>:(L> <CI>2>:(£>
V2 V2

and all parameters in the potential are real. Complex doublets defined as

o J o3
D, =

O, =11 . 1 .
! [ﬁ(‘ﬁ + py +iny) ﬁ(vz +p, +in,)



The softly broken Zz symmetric N2ZHDM

Z> symmetries (fwo complex doublets plus one real singlet)

O, > D; O,—> -y B O Sameas for the ZHDM (softly broken)

O - Dy D, > Dy Dy —Dg Spontaneously broken - no singlet dark matter

leads to the potential
2
m
V=m}|® "+ m|@,|* — m% (DD, + 1. c.)+75(l)§

A A

+?1(<DICD1)2 + 72((13;(132)2 + /13((131(131)((1);@2) + /14((131(1)2)(@;@1)
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+22|@[@y) + h.c. |+ 20+ S @10 0F + S @]y

with the real singlet
D5 = v+ ps

and a CP-conserving minimum

because all VEVs and all Mixing between the three CP-even states
parameters are real.



Similarities and differences

Common:

=)  tanp =% ratio of vacuum expectation values of the doublets

1

m=) 2 charged, H:, and 1 neutral CP-odd
mm) soft breaking parameter m2,,

mm) 2 VEVs viand vz (from the doublets)

Different:

mm) Extra VEV from the singlet vs

mm) rotation angles in the neutral sector  ilmass = [R;1]gauge

Ca —Sq
2HDM - o h, H [Rij] = <Sa c, )
€162 5162 )
N2HDM - Xy, &, and o5 hl, hz and h3 [R;j] = —(c18083+5103) €G3 = 851983 083
—C1$c3+ 81853 —(C183 + 8515,C3) €03



h,,s couplings

. This is the structure of the
géll‘i/l‘)/M = sin(/f} — a)géll\‘//lv 2HDM couplings when hizs is the
lightest CP-even scalar with
rotation matrices as defined
hVV hVV N2HDM previously.

EN2HDM = COS X 8 ppm
\ SINGLET COMPONENT

Type I KU =KD =KL = SinB
coso sino.
R I b e
cosa . Ynoupm = 0S4 Youpy
F _ F _ F_ _
Type F(y) Ko =KL = sinf3 o= cosf
cosa. IS sina
T kP =k == K =-—
Ype LS(X) v ° sinp : cosf3

Different Yukawa types are obtained by extending the discrete
symmetry to the fermions.



What is the problem?

= We want to renormalise the models. We want the renormalisation scheme to lead to gauge
independent results and o moderate NLO corrections.

= We have renormalisation schemes for the SM and they work just fine. So now we just have to
understand how to deal with the extra parameters.

= Most of the extra parameters are just the masses of the new particles. They are
renormalised on-shell, and since they are independent parameters, this is a simple
generalisation.

= Since the new chosen independent parameters are the rotation angles: two in the 2HDM: «a,

and four in the N2HDM: a, @, a3,  and the soft breaking parameter m122, these are the ones
we need to worry about.

= Besides, instead of one tadpole, we have two (2HDM) or three (N2HDM).

= So we will start with the tadpoles, changing from the standard scheme to a scheme proposed
by Fleischer and Jegerlehner (PRD23 (1981) 2001). This will allow o move the gauge
dependences in a way that makes them easy to control.



Renormalisation - on-shell conditions

Two scalar fields with the same quantum numbers, ¢1 and ¢.. Field strength renormalisation

¢1> — /7 <¢1>N ] % <¢1> 57, = 5Z¢1¢1 5Z¢1¢2
<¢2 0 ﬁ ») "\ 2 )\ " \8Zyy, 824,

Two point correlation functions

. Lo (P?) T4 (P?) T .
Lyt =| 00 P =i [7, |pP = DR+ 2y (0P - 8D 2, ~ i |01 - D+ £,07)
Uy (P Ty (PP
b2 p ) p / \

MASS MATRIX (D FOR
DIAGONAL)

MAss CTs

On-shell conditions
0Zyq, = —Re liﬁqﬁl(mzz)]
=) residue of the propagator at its pole is equal to i Ip

2
. . . . —_ 2 _— 2 ] /
=) field mixing vanishes for p2=m2 Ly = m3, — mz.Re [Z¢i¢j(m¢j) oD ¢f¢j]’ aatl

i ¢]

=) masses are the real parts of the poles of the propagator  Re [5D§i ¢I] =Re [Z¢i¢i(m§i)]

Specific form of mass counterterms depends on tadpole scheme



Tadpole Renormalisation

Renormalisation condition for the tadpole is

= 0 Renormalisation condition is
always the same

o

iTHO/hO ’i(STHO/ho
to restore the minimum condition of the potential at NLO. Two schemes

mm) standard (std)

Renormalisation constant is T; no tadpole diagrams at NLO

=) qlternative (alt)

Renormalisation constant is vi tadpoles reintroduced via v; variation




Tadpole Renormalisation (Standard to Alternative)

In the standard scheme the tadpole renormalisation constants appear in the mass matrix

counterterms
2
, [omg O 0Ty 4, 0144,
oD " ~ X + ST ST
0 omy, bty Ol

and this leads to mass counterterms that are gauge dependent. Going from the standard to the
alternative scheme amounts to (SM)

Vbare = Vren + ov

with

ren — vtree

and therefore gauge independent.

We now just have to repeat the procedure with two
tadpole conditions for the 2HDM and three
conditions for the N2HDM.



Tadpole Renormalisation (Alternative)

From the practical point of view this is how it works.

FLEISCHER, JEGERLEHNER, PRD23 (1981) 2001

Since the VEVs are the renormalisation constants we have to define the corresponding CTs

Vi =V +0v, Vv, =V, + 0V,

for the 2HDM case. The shifts can be expressed as a function of Tadpole variations

(5T, 5T, ) (6T,
<5V1 _ m[%, a th a 5VH _ m[%]
ov B 6Ty oT), ov | o7,
2 —Sq T —Cy g m2

\ " M) \ i)

and are calculated with the exact same conditions

Q X Tadpoles shifts are just for
| - = 0 bookkeeping purposes.
iT'Fo /p0 10T g0 /1o The shifts have to be included in all

counterterms.



Tadpole Renormalisation (Alternative)

Diagrammatically (a shift in VEV corresponds to an extra tadpole diagram)

O O

R

5‘___
[

(5T, ST, )
—C, — ——S§
<5V1> _ m[21 a m,% o D2 — (5777,351 0 ) N (AD¢1¢1 AD¢,1¢2)
= 5=
5V2 &S +ﬂc 0 5m%¢2 A1)9151¢>2 AD¢2¢2
it m

and therefore

which in practice removes the tadpoles from the definition of the counterterms.



We define the UV-divergent integral (V= W, Z)

[Ao(mxz/) - Ao(évmxz/)]Q y=1=¢&y

167r2J dPk |
(XV =

i Qn)P [k2 — m§1[k? — Eymi] B Aym}

We can write the terms of the HH self-energy that are gauge dependent in the standard tadpole

scheme
2 4 2
2 _ 8 My $g
M)y a. = 42 1287%c}, [( 525 - SZﬂ( _mh)) e 3mH] N

2
8 4ml2 $2a ) ) o)
+A - —m sz —=3m5| a
W 6472 [( $2 Szﬂ( h)> pra e

We define the new self-energy, in the alternative tadpole scheme as

/>

Tl (g*) = Zyup(g?) + Z48d(g?)
2 2
8 dmiy S,
Z“dd m -4, — —m s2 —3mila
( H)lgd 12871’26%, [( 55 S2ﬁ( h)> —a H| YZ

2 2
8 4m12 $2a 2 2 2 2
—A - ms; —m s5  =3m5| o
W647r2 [( 525 S2ﬂ( H h > B—a H| %w

and therefore the tadpole self-energy is gauge independent.




To compare the mass counterterms in the two schemes we just need the tadpole contributions

2 2(c3s, + s2cy)
8 $2a o 2 a’p v Patp 2
oT =1 S5 myE — Co_.m5| a
3 2
—A g2 *2a s2 m?— Z(Casﬁ il Sacﬂ) com2| a

In the standard scheme the mass counterterm is

@mp)" Ny g = Zarmip) |y g = 8Tl 4
2

2 2 2
8 4mi, 2 8 4mi, 2
=1 —2mg| a, + 4 —2m;| a

“ 12872c}, [ $2p H] 27 "Wedn2 [ $2p S

and in the alternative tadpole scheme

(5mH)“’d| Z}?fl(mé)lg,d, = EHH(MEI)Ig,d Z“dd(n’lH)I 4 (5mH)”d| Z“dd(i”nH)l a1t 0T,
2 2 2 2
8 4mi, ) 8 4my, )
= —2msl a, + A —2ms5|
12872}, [ 525 H] Z7 "W edn [ y o

2 2 2 2
8 4mi, 2 8 4mi, 2
=—-4 —2ms|l o, — A —2m;| a

“ 12872c}, [ $2p H] Z "W edn? [ $2p e

=0

The gauge dependent pieces are shifted in a way that the
mass renormalisation constants become gauge independent



Tadpole Renormalisation (Alternative)

This is true for all masses. The W boson mass in the two schemes

Vi0V] + 00,
2

2

2 2
mW—>mW+g

for the 2HDM case. The shifts can be expressed as a function of Tadpole variations

© Y ([ ©
W:t 1 H W:t + 2 Wi 1h Wi
DL N NN PN NN NN

m%;#—z’

We also need to take into account this variation for the vertices - we need to see where the VEVs
are (not the rotation angles)

. 2 o
. i . ;
Q 7
. 2 I H
) > 2 . \
ZgHZZ % ,l’gHZZ + QCQ%V <Ca5/U]_ _|_ SQ5U2) pr— ’LgHZZ —|— ______
Z trunc

There are no tadpoles in the scalar sector. There are new
tadpoles whenever a VEV is present.



Renormalisation of mixing angles

In the 2HDM there are two mixing angles a and B. In the N2HDM all 3 CP-even scalars mix and we
end up with four angles a1 , a2z, @3 and B. Let us start with the 2ZHDM.

The simplest approach would be to either use a physical process or MS. As we will see this often
leads to large NLO corrections.

It was shown that for the MSSM that a renormalisation scheme for tan f# may not be
simultaneously gauge-independent, process-independent and "numerically stable” (moderate NLO

corrections)
FREITAS, STOCKINGER, PRDG66 (2002) 095014

So our question is if we can find renormalisation schemes
for the angles that satisfy these criteria.

Note that the wave function renormalisation constants are
gauge dependent



Renormalisation of mixing angles

Mixing angle is renormalised via

PILAFTSIS, NPB504, 61 (1997)

KANEMURA, OKADA, SENAHA, YUAN, PRD70 115002 (2004)

= (V5 Y (15 )
2

5Ch —ba 1+ Lot

—é5C’h—|—5a and 52}1—2}“;50;&—504

2 2

Gauge to mass eigenstates

Expand in the rotation angle

1

50& = 1 (5Zh1h2 — 5Zh2h1)

1

2(mj, —my )

= ) s~Re(Snn, (Mi,) + Shing (M) — 26Thny) -

Using on-shell conditions




Renormalisation of mixing angles (2HDM)

The renormalisation conditions in the standard scheme are

da = 5 (mlzqo — mio) Re |:EH0h0 (m70) + Egopo(myo) 25THoho] ,
1
681 = ———Re Sgo0(m) + Zgoa0(0) — 20T g0 |
M40

1
55 =~ Re [zGiHi (M%) + S = (0) — 25TGiH4 .
H*E

And using the alternative scheme we get
1
2 (mio — mi)
1
60 = — Re| 2,0 (m?%0) + S0 (0|
2m1240 [ GOA A GOA }

o = Re[Sfio (mbo) + Ziho(mio)] |

1
683 = —5 Re [EgﬂHi (m3s) + Egﬂ%Hi(o)] :
H*E

b counterterms lead to gauge dependencies in the finite partes; a counterterm leads to gauge dependencies
in the infinite part (too big to show)

55(2) — 55(2)‘521
1
- /k [z — m3 ] [k2 = ym3 ] [(k+p)? = m?]

2
(0 ) EE L o me) — B 0] o

+mie [BWHO(m%{i) - 6Wh0(m%[i)} + Mo [ﬂWHO(O) — Bw Ho (qui)} } :

So now we would like to have a definition of the angle couterterms that is gauge
independent and at the same time preferably leading to moderate NLO corrections.



Renormalisation of mixing angles (2HDM)

We choose to isolate the gauge dependent parts using the pinch technique (PT): the self-energies
obtained by this procedure will be called pinched self-energies and the renormalisation conditions

will be called pinched schemes. CORNWALL, PAPAVASSILIOU, PRD40 (1989) 3474

The self energies can be written as The Background-Field Method seems to
contain some of the results of PT for a
particular choice of the gauge parameter:
“Putting the quantum gauge parameter equal to one,

SE (p?) = {22@2 (pQ)] et 2309, (%) we recover the pinch-technique results as a special
case of the background-field method. “

DENNER, WEIGLEIN, DITTMAIER, PRLB333 (1994) 420

that is, the method gives us a term that is just the self-energy in the alternative tadpole
scheme at £ = 1, plus an additional term that depends on the model. In the case of the 2HDM

2 2 2
g°SB—_aCa— M0 + M
yadd o(p?) = —3’;:2)‘026 2 (p2 _THY TR 5 ho) { [Bo(p®; m%, m%0) — Bo(p*;m%, m%)]

26 [Bo(p%s mly, ms) — Bo(p®smlymiy)] } |

9%85_aC m
E?}%%O( 2) — 327‘—0& B—a (p2 QAO> BO p mz,mHO) BO(p27m2Z7m%LO):| )

2
G%S3_aC m4,.
vadd L (p?) = 616’;“Tﬂ = (p2 H > [Bo(p*s miy, mie) — Bo(p%; miy, mio)]

(]



Renormalisation of mixing angles - definition of pinched schemes

Before defining the pinched schemes, note that importance of having a GFP-independent definition of the
mixing angle CTs. The use of the alternative FJ tadpole scheme leads to one-loop decay amplitude which
when setting the mixing angle CTs to zero, is already a manifestly GFP- independent quantity.

Consequently, by defining the mixing angle CTs in a GFP-independent scheme, the full partial decay width
maintains the GFP independence as well.

The pOS pinched scheme leads to the following definition of the counterterms

_ e[ [ lmdo) + Sigho(nfo)]ey + Sitho (no) + Sitho ()]
o=
2 (my — mi,)

Re| [Z8840 (m2o) + Di8840 (0)] ., + Zed,0 (m2o) + T2kl (0)]

Y

58 — _
8 o, :
oy Re (S () & B8 O)] s + Bl () + St 0)
/8 - 27773-_1:&

while the p* pinched scheme leads to

1 tad m%{O + ml210
o = mRe lzﬁoho (T )
HO ho &=1

2 2 _ Mg, T Mg,
e (), A
A0 £=1
2 .
58 — —_L R [Egai,{i (mHi>] ' Used for the MSSM in
mH:I: 2 £=1

ESPINOSA, YAMADA, PHYS. REvV. D67 (2003) 036003



Renormalisation of mixing angles (N2HDM)

In the N2HDM the charged and pseudo scalar sectors are exactly the same. So are the renormalisation
conditions.

The CP-even sector has now three field, two from the doublets and one from the singlet

1+ 22mm 50y, 60
V2, = R(0c;) 0C 1—1-6ZHTQHQ 0C23 =
0031 0C32 1—|-6Z%
H—(sZH—lH1 CanCaz 001+ 8030002 +0C12 Ca3002—Sn3Ca, 001 +0C13
—Coy Cag 0] — So3002+0C1 1+5ZH—2H2 dag+Sq,001+0Co3
oy 00+ SagCay 001 +3Cs1  —803— 50,001 +3Cs 14 Ztgts

and this leads to the following definition of the rotation angles

c S
50&1 = =3 (5ZH1H2 - 5ZH2H1) — =3 (6ZH1H3 - 5ZH3H1)

" dcq, 4cay
Ca Sa
dag = TB (5ZH1H3 - 5ZH3H1) + T3 OZm 1, = 0Zmm,)
1 S
(5013 = 1_1 (5ZH2H3 - 5ZH3H2) + 40& [sa?, (5ZH1H3 - 5ZH3H1) — Cag (5ZH1H2 - 5ZH2H1)]
a2

and then we just proceed as in the 2ZHDM.



Process dependent (for any of the models)

Process dependent: renormalisation of tanp using the decay A — %7~ (that depends only on SM

parameters and on tanp)
FREITAS, STOCKINGER, PRD66 (2002) 095014

T+ 7'+
F S . F
0 ! 0 i 0
A ES A—----‘E: F A Vv
F N Ch F
T T

The process has the advantage that the QED corrections form a UV-finite subset by themselves. Since it
is exactly the QED subset of the amplitude that contains the IR divergences, the idea is to isolate the
purely weak corrections from the QED corrections and only use the former for the process dependent
definition of the angle counterterm.

The one-loop amplitude for the process and the counterterms are

) om om? 1+Y2
A};gii AAOTT + 'AAOTT = AAOTT [ AO'TT + F OTT] 'FAOTT = ?g + - - ‘2/V ’ 0f +

0Zpop0 1 0Zgop0  Zp | OZE
- = + +
mr 2myy, Y;

2 Y3 2 2 2

The off counterterm is then fixed by the condition

2HDM type Y; Y- Y-
F ! FNLO weak yp 1 2 3
A0 —

AOrr . 5 )

. e 1 .

giving sg  Sg ts
11 _Be Ca

~Ys [pve | %9 dm. omy,  8Zop 1 8Zgo g0 . 8 7% N §ZR s s P

1+Y2727 " g " om, 2mY, 2 Y; 2 2 2

58 =




Process dependent (for any of the models)

We can then use, for instance, the decay H — 777~ (that depends on SM parameters plus on a and p),
using the previous definition of the angle p.

The one-loop amplitude for the process and the counterterms are

’ Pl = g T g, Ty Y0 R
A = 4SS+ AT = AR, + P e 2
6ZT7' + 5Z7—7-
2 2

The delta beta counterterm is then fixed by the condition

LO ! NLO,weak
I‘HOTT - FH07'7'

and

—Y2 VC 59 5m7 (5m%V 5ZH0H0 Y1 5ZhoH0 5ZL 5ZR
(5 — _ Y 6 =4 TT TT
a v Fporr ’ - m  2m3, + Y388 + 5 + % 2 + 5 5

The process dependent schemes that were chosen to be included in the 2HDECAY code are

Process 1 - define 8p via A — 777 and subsequently 8a via H — 777~
Process 2 - define 8p via A — 777 ”and subsequently da viah — 777~
Process 3 - define 8a and 3p simultaneously via H — 77" and h — 777~

KRAUSE, MUHLLEITNER, SPIRA, CPC (2019) 2HDECAY.



Renormalisation of m122 and the VEVs

The only remaining independent parameters which requires renormalisation are the soft-Zz breaking
parameter m?,, and the VEVs.

Since mlz2 appears in the trilinear and quartic Higgs couplings, the counterterm could be fix via a Higgs to
Higgs decay process. We found this leads to huge NLO contributions.

So we fix the CT in the MS scheme. This implies that the value of the renormalisation scale pr has to be
specified.

Qo™ 8m S

om W2 |2 o —md + 222wy — mf) — 3(2miy +m)

167m3, (1) - 528 8

my
1 1 1 Infinite parte for the 2HDM
2 2 2
U d l
2 QemMiy 8mi, 2 2 & 2 2 2

Imiy = ; =5 [ P 2mi e —my + Z Ry Rigmyy, — 3(2myy +my)

16mmf, (1 2 ) - 52 =

1 1 Infinite parte for the N2HDM
+Z3mu 2Jers 2yt (Y4— >+Z2 2y} (Y4 tw)]A

As for the VEVs, viand v2 are replaced by v and tanp, while vs is renormalised in the MS scheme (vs infinity
too big to show here).



Constraints

@ POinTS gener'ClTCd WlTh SCClnner'S r.equir.ing COIMBRA, SAMPAIO, SANTOS, EPJC73 (2013) 2428

MUHLLEITNER, SAMPAIO, RS, WITTBRODT,

- Mhgy, =125.09 GeV (others 5 GeV away) JHEP 03 (2017) 094
- charged Higgs mass above 580 GeV in Type IT and Flipped

- absolute minimum

- boundedness from below

- that perturbative unitarity holds
-5, Tand U

MISIAK, STEINHAUSER, EPJC77 No. 3, (2017) 201

& The Higgs rates are checked with HiggsSignals 2.2.3

BECHTLE, HEINEMEYER, STAL, STEFANIAK, WEIGLEIN, EPJC74 NoO. 2, (2014) 2711

€ The Higgs exclusion limits stemming from experiments at the LEP, Tevatron and
LHC are checked with HiggsBounds 5.3.2.

BECHTLE, BREIN, HEINEMEYER, STAL, STEFANIAK, WEIGLEIN, WILLIAMS, EPJC74 No. 3, (2014) 2693



AFEW

Comparison of schemes (2HDM)

30 - ] ] ] ] ] ]
o} Point P2
20 -
g8 ] my, = 125.09GeV , mg = 302.324 GeV
@ ma =  494.618GeV , mys = 300.077 GeV |
N 10'_ miy(mng,) =  28328.8GeV?, al, = —0.200175 ,
1 ] I tal, =  2.66082, 9HDM type = I,
= |
10 i —
] ! relative size of electroweak
90] i one-loop corrections:
1 - L
] ! S r NLO,EW LO,EW
... 1 - | EW L F ) _F )
golPPMS e AN TLOEW
275 300 325 350 375 400 425

my in GeV KRAUSE, MUHLLEITNER, SPIRA, CPC (2019) 2HDECAY.

p* and pOS schemes as previously defined

proc 1: 8p viaA—T+T- and subsequently da via H—>T1+1-

OS12 and BFMS in (and previous talk by S. Dittmaier)

DENNER, DITTMAIER, LANG, JHEP 11 (2018) 104.

Corrections for point P2 between 9% and 20%.



Comparison of schemes (2HDM)

Uncertainty estimate

Point P2
1 S R 1 1 1 1
1 ‘__ ....... i T T my =  125.09GeV , my = 302.324 GeV ,
NS .'_'.--_‘ =‘:".'".’:~'-.‘.|[—T.:f—_..=. .............. i ma = 494.618 GeV , mys = 300.077 GeV |
) ol TT T -‘—: - ~.-- T 1 JLRSTINITIIIIER [ | mia(mngy) = 28328.8GeV?, al, = —0.200175 ,
- 1 ! ' TTTe= tol,, =  2.66082, 2HDM type = I,
Q |
N 1] E i
T 1 1
1 0 0
= — | : partial decay width for
- e 1 i
= -2 pOS™ | - H- 77
= —-=pOS® ||
m ] I
2 _3 B procl i i
—-0512 ) . relative difference
1..... 1 o .
g BEMS [ yipor I between different schemes:
275 300 325 350 375 400 425 FNLO,EWl _PNLO,EW|
my in GeV ATEW.z — FNLmo,EW| —
P9

Relative difference over large range of the charged Higgs mass between -3.8% and 1.0%,
and for point P2 the difference is of the order 0.5%.

Small uncertainty for the considered channel and parameters.



Comparison of schemes (N2HDM)

100 N BT BT B EPEPEEE P EPEPEPE B | -
e pOS¢ | arge range of input parameters
75 ) : N2HDM type II
S R
g 90 o MS(FJ)|F partial decay width for
Q 25 _ A — Z Hy
N ﬁi e‘ 3¢ .5 s relative size of electroweak
J: . : one-loop corrections:
- gw  [NLO.EW_[LOEW
E -50 2 AT = TLO,EW
~ i
< 75 :
o
-100 2

0.5 1.0 1.5 LO2E.18V . 2030 35 40 45 15 000 input parameter sets, that
izy, in GeV fulfil the most relevant theoretical
and experimental constraints.

In this plot MS scheme refers to the renormalisation of the angles.

Although for large widths this scheme is the most unstable, it is also true that very large
corrections also appear in the other schemes.



Comparison of schemes (N2HDM)

;HP2H
700

my, in GeV

550 600 650 750

Here again the corrections for
point P2 vary just a few percent.

The uncertainty is below 1% for
the entire range of masses shown.

]_0 1 1 1 l| 1
| pi E .
0.84~ — pOS : / e B
- _pOSC E ! /-
1 ' an
0.6 - E e N
i : Pl /
| A7
04 —§ =< - _ _ _ - - - ’/E - -
0.2] i
: §HP2H
0.0 TR -
500 550 600 650 700 750 800
my, in GeV
= 91.123 GeV , MH,
= 696.389 GeV ma
= 672.106 GeV , miy(Mhgy,)
= 2196.48 GeV a1|p$
= —1.45921 GeV 3|0
- 0.950614 | N2HDM type

125.09 GeV ,
766.781 GeV
208 360.0 GeV? .
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Conclusions

¢ A renormalisation scheme for some of the most commonly used versions of the
2HDM and for the N2HDM was proposed.

€ We have extended the scheme proposed by Fleischer and Jegerlehner to those
models.

€ New parameters: rotation angles and a mass term (soft breaking) appear.
& Rotation angles are renormalised by an identification with the of f-shell wave
function renormalisation constants. As these are gauge dependent a procedure to

remove the gauge dependencies was applied.

& The criteria of gauge independence was met and the one for moderate corrections
was achieved in most cases.

€ Good agreement with other proposed schemes.
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Comparison of schemes (2HDM)
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15 000 input parameter sets, that
fulfil the most relevant theoretical
and experimental constraints.

proc 1: 8p viaA—T+T- and subsequently da via H—>T1+1-

proc 2: 8p viaA—T1+T- and subsequently da via h—T+71-

For the full scan more stable seems to be the p* scheme





