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The softly broken Z2 symmetric 2HDM

and CP is conserved because VEVs are
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Z2 symmetry (two complex doublets)

Extended to the fermions - no FCNC at tree-level

leads to the potential
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ΦS = vS + ρS
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Mixing between the three CP-even states

Φ1 → Φ1; Φ2 → − Φ2; ΦS → ΦS

The softly broken Z2 symmetric N2HDM

Z2 symmetries (two complex doublets plus one real singlet)

Same as for the 2HDM (softly broken)

Φ1 → Φ1; Φ2 → Φ2; ΦS → − ΦS Spontaneously broken - no singlet dark matter

leads to the potential

with the real singlet

and a CP-conserving minimum 
because all VEVs and all 
parameters are real.



Similarities and differences

ratio of vacuum expectation values of the doublets
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2 charged, H±, and 1 neutral CP-odd

h, H

h1, h2 and h3

rotation angles in the neutral sector

2HDM – α

N2HDM - α1, α2 and α3

soft breaking parameter m2
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Common:

Different:
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2 VEVs v1 and v2 (from the doublets)

Extra VEV from the singlet vS
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h125 couplings

Singlet component

ghVV
2HDM = sin(β − α)ghVV

SM

ghVV
N2HDM = cos α2 ghVV

2HDM

YN2HDM = cos α2Y2HDM

2HDM 
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This is the structure of the 
couplings when h125 is the 

lightest CP-even scalar with 
rotation matrices as defined 

previously.

Different Yukawa types are obtained by extending the discrete 
symmetry to the fermions.



What is the problem?

➡ We want to renormalise the models. We want the renormalisation scheme to lead to gauge 
independent results and to moderate NLO corrections. 

➡ We have renormalisation schemes for the SM and they work just fine. So now we just have to 
understand how to deal with the extra parameters. 

➡ Most of the extra parameters are just the masses of the new particles. They are 
renormalised on-shell, and since they are independent parameters, this is a simple 
generalisation. 

➡ Since the new chosen independent parameters are the rotation angles: two in the 2HDM:   
and four in the N2HDM:   and the soft breaking parameter  , these are the ones 
we need to worry about. 

➡ Besides, instead of one tadpole, we have two (2HDM) or three (N2HDM). 

➡ So we will start with the tadpoles, changing from the standard scheme to a scheme proposed 
by Fleischer and Jegerlehner (PRD23 (1981) 2001). This will allow to move the gauge 
dependences in a way that makes them easy to control.

α, β
α1, α2, α3, β m2

12



Renormalisation - on-shell conditions
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Two scalar fields with the same quantum numbers, 𝝓1 and 𝝓2. Field strength renormalisation 

Two point correlation functions
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Mass CTs

On-shell conditions

residue of the propagator at its pole is equal to i

field mixing vanishes for p2=m2
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Specific form of mass counterterms depends on tadpole scheme



Tadpole Renormalisation

Renormalisation condition for the tadpole is
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Renormalization: General Tadpole Conditions 

renormalization conditions for the tadpole terms: 

 
 
 
 
 

purpose: restore the minimum conditions of the potential at NLO 
 

practical effect: no tadpole diagrams in NLO calculations 

to restore the minimum condition of the potential at NLO. Two schemes

standard (std)

alternative (alt)

Renormalisation condition is 
always the same

Renormalisation constant is Ti

Renormalisation constant is vi

no tadpole diagrams at NLO

tadpoles reintroduced via vi variation



Tadpole Renormalisation (Standard to Alternative)

In the standard scheme the tadpole renormalisation constants appear in the mass matrix 
counterterms

δD2
ϕ ≈ (

δm2
ϕ1

0

0 δm2
ϕ2

) + (
δTϕ1ϕ1

δTϕ1ϕ2

δTϕ2ϕ1
δTϕ2ϕ2)

with

and this leads to mass counterterms that are gauge dependent. Going from the standard to the 
alternative scheme amounts to (SM)

vbare = vren + δv

vren = vtree

and therefore gauge independent.

We now just have to repeat the procedure with two 
tadpole conditions for the 2HDM and three 

conditions for the N2HDM.



Tadpole Renormalisation (Alternative)

From the practical point of view this is how it works.

for the 2HDM case. The shifts can be expressed as a function of Tadpole variations

v1 → v1 + δv1, v2 → v2 + δv2

Since the VEVs are the renormalisation constants we have to define the corresponding CTs
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and are calculated with the exact same conditions
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Renormalization: General Tadpole Conditions 

renormalization conditions for the tadpole terms: 

 
 
 
 
 

purpose: restore the minimum conditions of the potential at NLO 
 

practical effect: no tadpole diagrams in NLO calculations 

Tadpoles shifts are just for 
bookkeeping purposes.

The shifts have to be included in all 
counterterms.

Fleischer, Jegerlehner, PRD23 (1981) 2001
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Diagrammatically (a shift in VEV corresponds to an extra tadpole diagram)

for the 2HDM case. The shifts can be expressed as a function of Tadpole variations
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the redundant parameters m2
11 and m

2
22 again from the parameter set. The vev shifts induce

the following shifts of the tadpole parameters at NLO:
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On the right-hand side of both equations, we identified the shift of the tadpole parameters,
as induced by the shift of the vevs, with the counterterms �T1 and �T2 which are fixed
through the renormalization conditions stated in Eq. (4.32). The diagrammatic form of the
counterterms �T1 and �T2 is given by Fig. 4.3. In order to derive expressions for the vev
shifts �v1 and �v2, we compare the coe�cients of the shifts in Eqs. (4.52) and (4.53) with the
elements of the CP-even mass matrix in Eq. (2.16), which reveals the following identity:

0

@�T1

�T2

1

A = M
2
⇢

��
Ti=0

0

@�v1

�v2

1

A . (4.54)

Therefore, the tadpole shifts are diagonalized by the same matrix R↵ in Eq. (2.22) that
diagonalizes the mass matrix of the CP-even fields ⇢1 and ⇢2, so that the vev shifts can be
expressed in the mass basis of the CP-even Higgs fields:
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By applying the renormalization condition depicted diagrammatically in Fig. 4.3, this shift
can be interpreted as an explicit appearance of a diagram containing the Higgs tadpole or,
equivalently, a connected tadpole diagram which contains not only the Higgs tadpole, but
additionally the Higgs propagator with zero momentum transfer,
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where hi 2 {H
0
, h

0
} stands for the physical Higgs particles. In order to consistently apply

the alternative tadpole scheme, the vev shifts introduced in Eq. (4.51) have to be applied to
all sectors of the 2HDM where the vacuum expectation values explicitly appear. Since the
calculation of the tadpole diagrams is usually performed in the mass basis, but the shift of
the vevs appear most conveniently in the gauge basis, it is useful to state the transformation
between the two basis. With the inverse of Eq. (2.24), we get:
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Finally, the o↵-diagonal part �DG0A0 receives a non-vanishing contribution as well,
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where we again identified the connected tadpole diagrams with the help of Eq. (4.56) and the
coupling constants according to Eqs. (4.64) and (4.65) in order to derive the diagrammatic
representation.

This result can be easily generalized to the whole scalar sector of the 2HDM. If we consider
the full shift of the mass matrices (including the counterterm insertion for the bare masses),
then the mass matrix counterterm �D

2
�
for the scalar doublet � in the alternative tadpole

scheme reads

�D
2
�
=

0

@�m
2
�1

0

0 �m
2
�2

1

A+

0

@�D�1�1 �D�1�2

�D�1�2 �D�2�2

1

A , (4.69)

with the explicit form of the additional mass shifts
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where i, j = 1, 2. Note that in the alternative tadpole scheme, the tadpole counterterms
�T1 and �T2, introduced through the vev shifts in Eqs. (4.52) and (4.53), are part of the
shift parameters �D�i�j

of the physical mass matrices of the scalar sector. Therefore, in the
alternative scheme they do not appear explicitly as counterterms in Eq. (4.69). This is in
contrast to the standard scheme, where we considered �T1 and �T2 as counterterms, appearing
explicitly in �D

2
�
, cf. Eq. (4.35). Consequently, the tadpole counterterms in Eqs. (4.36) –

(4.44) do not appear in the definition of mass counterterms and wave function renormalization
constants within the alternative tadpole scheme.

In order to further illustrate the e↵ect of the mass shifts, we recall the form of the renormal-
ized two-point correlation function in Eq. (4.14), where the renormalized self-energy b⌃�(p

2)
explicitly appears. If we redefine the 1PI self-energy as
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then it is straightforward to see that the insertion of Eq. (4.69) into Eq. (4.16) yields the
following form of the renormalized self-energy in the alternative tadpole scheme:
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As a consequence, the counterterms and wave function renormalization constants derived at
the end of Sec. 4.3, namely Eqs. (4.25) – (4.30), change to:
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As a consequence, the counterterms and wave function renormalization constants derived at
the end of Sec. 4.3, namely Eqs. (4.25) – (4.30), change to:

and therefore

Tadpole Renormalisation (Alternative)

which in practice removes the tadpoles from the definition of the counterterms.



We define the UV-divergent integral (V = W, Z)
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We can write the terms of the HH self-energy that are gauge dependent in the standard tadpole 
scheme 

We define the new self-energy, in the alternative tadpole scheme as

Σtad
HH(q2) = ΣHH(q2) + Σadd

HH (q2)
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i⌃tad(p2) := + +

Figure 4.4.: Modified self-energy in the alternative tadpole scheme. The self-energy
i⌃tad(p2) consists of all 1PI self-energy diagrams together with the one-loop tadpole diagrams,
indicated by a gray blob. The self-energy is depicted in a generic topological way and has to
be replaced with the actual particle content and vertices of the 2HDM.

�Z�1�1 = �Re

"
@⌃tad

�1�1
(p2)

@p2

#

p2=m
2
�1

, (4.73)

�Z�1�2 =
2

m
2
�1

�m
2
�2

Re
h
⌃tad
�1�2

(m2
�2
)
i
, (4.74)

�Z�2�1 =
2

m
2
�2

�m
2
�1

Re
h
⌃tad
�1�2

(m2
�1
)
i
, (4.75)

�Z�2�2 = �Re

"
@⌃tad

�2�2
(p2)

@p2

#

p2=m
2
�2

, (4.76)

�m
2
�1

= Re
h
⌃tad
�1�1

(m2
�1
)
i
, (4.77)

�m
2
�2

= Re
h
⌃tad
�2�2

(m2
�2
)
i
. (4.78)

This result can be generalized to the fermion and gauge boson sectors. In general, the change
from the standard to the alternative tadpole scheme leads to a redefinition of the self-energy
in the form of Fig. 4.4. Additionally, the tadpole counterterms �T�i�j

in the scalar sector drop
out of the definition of the field strength renormalization constants and mass counterterms.

The alternative tadpole treatment has another important implication. Consider e.g. the
coupling constants gH0Z0Z0 and gH0H0Z0Z0 for the coupling of two vector bosons Z0 with one
or two heavy Higgses H

0, respectively (for simplicity, we omit the Lorentz structure of the
associated Feynman rule):

igH0Z0Z0 =
ig

2
vc��↵

2c2
W

=
ig

2

2c2
W

(c↵v1 + s↵v2) , igH0H0Z0Z0 =
ig

2

2c2
W

. (4.79)

The shifts from Eq. (4.51) introduce a shift in coupling constants as well. In order to perform
this shift consistently, the couplings have to be expressed in terms of the vacuum expectation
values v1 and v2. Note however that when performing the shifts in the coupling constants, we
carefully have to di↵erentiate between the angles ↵ and � in the sense of mixing angles and
� in the sense of the ratio of the vevs, cf. Eq. (2.35), and ↵ as the ratio of 2HDM potential
parameters7, cf. Eq. (2.36). The vev shifts from Eq. (4.51) only a↵ect the latter two.

The quartic coupling in Eq. (4.79) does not contain the vevs. Therefore, it does not receive
a shift. In contrast to that, the trilinear coupling given in Eq. (4.79) contains ↵ as a mixing

7The angle ↵ only appears in the trilinear and quartic Higgs couplings partly in the sense of a ratio of 2HDM
potential parameters, cf. Eq. (2.36). In all other couplings, ↵ is the mixing angle.

Σadd
HH (m2
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64π2 ( 4m2
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s2β
−

s2α

s2β
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H − m2
h )) s2

β−α − 3m2
H αW

and therefore the tadpole self-energy is gauge independent.
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To compare the mass counterterms in the two schemes we just need the tadpole contributions

In the standard scheme the mass counterterm is

(δm2
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and in the alternative tadpole scheme
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12
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− 2m2
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= 0

The gauge dependent pieces are shifted in a way that the 
mass renormalisation constants become gauge independent



Tadpole Renormalisation (Alternative)

This is true for all masses. The W boson mass in the two schemes

for the 2HDM case. The shifts can be expressed as a function of Tadpole variations

m2
W → m2

W + g2 v1δv1 + v2δv2

2

We also need to take into account this variation for the vertices - we need to see where the VEVs 
are (not the rotation angles)

There are no tadpoles in the scalar sector. There are new 
tadpoles whenever a VEV is present.
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Renormalisation of mixing angles

In the 2HDM there are two mixing angles 𝝰 and 𝝱. In the N2HDM all 3 CP-even scalars mix and we 
end up with four angles 𝝰1 , 𝝰2 , 𝝰3 and 𝝱. Let us start with the 2HDM.

The simplest approach would be to either use a physical process or  . As we will see this often 
leads to large NLO corrections.

MS

So our question is if we can find renormalisation schemes 
for the angles that satisfy these criteria.

It was shown that for the MSSM that a renormalisation scheme for   may not be 
simultaneously gauge-independent, process-independent and “numerically stable” (moderate NLO 
corrections) 

tan β

Freitas, Stöckinger, PRD66 (2002) 095014

Note that the wave function renormalisation constants are 
gauge dependent



Figure 1: Generic diagrams contributing to AV C
h1h1h1

. Here F denotes fermions, S scalars, and V gauge bosons.
We should explicitly list what F , S and V are.
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and expanding this to strict one-loop order,

R (↵+ �↵)
p

Z�

✓
�H

�S

◆
= R(�↵)R(↵)

p
Z�R(↵)T| {z }

!
=
p
ZH

R(↵)

✓
�H

�S

◆
+O(�↵2) =

p
ZH

✓
h1

h2

◆
, (3.44)

yields the field strength renormalisation matrix
p
ZH connecting the bare and renormalised fields

in the mass basis. Using the rotation matrix expanded at one-loop order results in
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Demanding that the field mixing vanishes on the mass shell is equivalent with the identification
of the o↵ diagonal elements of

p
ZH with those in Eq. (3.27),
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2
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With Eq. (3.35) the mixing angle counterterm reads
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In our numerical analysis we will use two more renormalisation schemes for �↵: the MS
scheme and a process-dependent scheme. In the MS scheme we only take the counterterm �↵ into
account in the divergent parts inD = 4 dimensions. Applying dimensional regularisation [47,48],
these are the terms proportional to 1/✏, where D = 4� 2✏. Both the KOSY scheme and the MS
scheme lead to a gauge-parameter dependent definition of �↵ This is avoided if �↵ is defined
through a physical process.

In our process-dependent renormalisation scheme for ↵, discussed in the numerical results,
we define the counterterm �↵ through the process h ! ⌧⌧ , where h denotes the SM-like scalar of
the two hi (i = 1, 2). The counterterm is defined by requiring the NLO decay width to be equal
to the LO one. The NLO corrections involve infrared (IR) divergences stemming from the QED
corrections. Since they form a UV-finite subset, this allows us to apply the renormalisation
condition solely on the weak sector thus avoiding the IR divergences, i.e. we require for the
NLO and LO amplitudes of the decay process

A
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h!⌧⌧

!
= A

LO

h!⌧⌧
, (3.50)

where ’weak’ refers to the weak part of the NLO amplitude. The h coupling to ⌧ ⌧̄ depends on
the mixing angle ↵ as

gh⌧⌧ =
gm⌧ cos↵

2mW

, (3.51)
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Gauge to mass eigenstates

Expand in the rotation angle

Using on-shell conditions

Kanemura, Okada, Senaha, Yuan, PRD70 115002 (2004)

Renormalisation of mixing angles



And using the alternative scheme we get

β counterterms lead to gauge dependencies in the finite partes; α counterterm leads to gauge dependencies 
in the infinite part (too big to show)

The renormalisation conditions in the standard scheme are

48 4. Renormalization of the Two-Higgs-Doublet Model

conditions to the CP-odd and charged sectors, it is necessary to choose which o↵-diagonal
two-point correlation functions shall vanish, since not all CP-odd and charged fields can be
on-shell at the same time. Out of four possible options, the same two as in [91] are chosen.
Which of the definitions is used within the renormalization of a decay process depends on
the external CP-odd or charged particles that are present in the considered process and that
hence shall be renormalized OS. In summary, the angle counterterms in Kanemura’s scheme
are given by:

Standard tadpole scheme
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Alternative tadpole scheme
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Among the considered processes in this thesis in Chapter 5 to Chapter 7, only one contains
an external H+ particle, while all other processes do not contain external CP-odd or charged
Higgs bosons in the initial or final state. Therefore, we choose the charged fields to be
completely on-shell, which results in the usage of ��(2) in this thesis.

The angle counterterms defined according to Kanemura’s scheme are explicitly gauge-de-
pendent, both for the standard as well as the alternative tadpole scheme. If we use the
notation of Eq. (C.8) and Eq. (C.9) for the reduced scalar integrals, one way of presenting
the gauge-dependence10 of ��(2) is
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(4.155)

where the short-hand notation ⇠ 2 {⇠W , ⇠Z , ⇠�} is used here and in the following. The form
of the gauge-dependence is independent of the tadpole scheme that is chosen. Due to the
structure of the integrals in the second and third line of Eq. (4.155), the gauge-dependent
part is UV-finite by itself. Therefore, Kanemura’s scheme introduces a gauge-dependence
through ��

(2) in the UV-finite part of the amplitude only.

10The decomposition into gauge-dependent and -independent parts is not unique. Therefore, the presented form
is only one of many possible ways of isolating the gauge-dependence.
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conditions to the CP-odd and charged sectors, it is necessary to choose which o↵-diagonal
two-point correlation functions shall vanish, since not all CP-odd and charged fields can be
on-shell at the same time. Out of four possible options, the same two as in [91] are chosen.
Which of the definitions is used within the renormalization of a decay process depends on
the external CP-odd or charged particles that are present in the considered process and that
hence shall be renormalized OS. In summary, the angle counterterms in Kanemura’s scheme
are given by:
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Among the considered processes in this thesis in Chapter 5 to Chapter 7, only one contains
an external H+ particle, while all other processes do not contain external CP-odd or charged
Higgs bosons in the initial or final state. Therefore, we choose the charged fields to be
completely on-shell, which results in the usage of ��(2) in this thesis.

The angle counterterms defined according to Kanemura’s scheme are explicitly gauge-de-
pendent, both for the standard as well as the alternative tadpole scheme. If we use the
notation of Eq. (C.8) and Eq. (C.9) for the reduced scalar integrals, one way of presenting
the gauge-dependence10 of ��(2) is
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where the short-hand notation ⇠ 2 {⇠W , ⇠Z , ⇠�} is used here and in the following. The form
of the gauge-dependence is independent of the tadpole scheme that is chosen. Due to the
structure of the integrals in the second and third line of Eq. (4.155), the gauge-dependent
part is UV-finite by itself. Therefore, Kanemura’s scheme introduces a gauge-dependence
through ��

(2) in the UV-finite part of the amplitude only.
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where the short-hand notation ⇠ 2 {⇠W , ⇠Z , ⇠�} is used here and in the following. The form
of the gauge-dependence is independent of the tadpole scheme that is chosen. Due to the
structure of the integrals in the second and third line of Eq. (4.155), the gauge-dependent
part is UV-finite by itself. Therefore, Kanemura’s scheme introduces a gauge-dependence
through ��

(2) in the UV-finite part of the amplitude only.
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Renormalisation of mixing angles (2HDM)

So now we would like to have a definition of the angle couterterms that is gauge 
independent and at the same time preferably leading to moderate NLO corrections.

130 C The Pinch Technique in the 2HDM

modified by use of the pinch technique. If we want to apply the pinch technique e.g. to the
charged sector for the derivation of a pinched self-energy of the charged Higgs H±, we have
to allot the pinching parts for the charged sector between the self-energies of the H±, G± and
W

± bosons as well as between the mixing self-energies of these particles. In this chapter, we
present the application only to a small subset of all possible self-energies of the 2HDM. For
more details on the subtleties that arise when applying the pinch technique to a theory with
non-conserved fermion currents, we refer to [93,96].

In order to perform the calculations by hand, we introduce the propagator for a gauge boson
V 2 {Z

0
,W

±
, �} with momentum q in general R⇠ gauge,
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�i
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2
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2
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�
, (C.2)

where we defined the short-hand notation

�V := 1� ⇠V (C.3)

for the gauge-fixing parameter ⇠V of the gauge boson V . In the case of massive gauge bosons,
additional gauge-dependences are introduced to the one-loop amplitude through the ghost
and Goldstone propagators

i
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. (C.4)

Additionally, we introduce the parameters
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which account for the coupling structure of the Higgs particles within the 2HDM.

For a convenient presentation of the results of our calculations, we introduce the scalar inte-
grals defined by ’t Hooft and Veltman [119],
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where we used the definition of the integral operator presented in Eq. (B.25). Furthermore,
we introduce the two additional integrals [100]
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where mj is the mass of an arbitrary particle. Note that these integrals are closely related to
the usual scalar integrals defined in Eqs. (C.6) and (C.7). If the A0 or B0 integrals contain
the gauge-fixing parameter ⇠V , they may be converted to the ↵V and �V j integrals according
to
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that is, the method gives us a term that is just the self-energy in the alternative tadpole 
scheme at  , plus an additional term that depends on the model. In the case of the 2HDMξ = 1
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since all gauge-dependent parts of �� form a UV-finite subset, and can thus be removed from
the angle counterterm. However, the isolation of the gauge-dependent parts is not unique
and [85] presents no unambiguous way of defining what parts should be contained in �� and
what parts are shifted into �C�1 and �C�2 .

An even more serious problem arises when trying to apply this approach to the angle coun-
terterm �↵. The second line of Eq. (4.156) contains integrals that are UV-divergent by
themselves. Therefore, the gauge-dependent parts of �↵ in the standard tadpole scheme are
UV-divergent. Due to the renormalizability of the 2HDM, these UV-divergent terms have
to appear in any other renormalization scheme of �↵, as well. Defining these UV-divergent
parts into the unobservable counterterms �C�1 and �C�2 , which are not part of any one-loop
calculation, thus inevitably leads to an overall UV-divergent one-loop amplitude. Therefore,
the approach to remove the gauge-dependence of the angle counterterms presented in [85]
cannot be applied to �↵ in the standard tadpole scheme. In the alternative tadpole scheme,
it is possible to remove the gauge-dependence from �↵, since all integrals from the second
to the last line of Eq. (4.157) are UV-finite. However, the same problem as in �� remains,
namely that the division of gauge-dependent and -independent parts is ambiguous.

4.8.3. Pinched Scheme

Eradicating the deficiencies of Kanemura’s scheme is equivalent to using a renormalization
scheme that leads to an overall UV-finite and gauge-independent one-loop amplitude on the
one hand and stating an unambiguous definition of the gauge-independent parts of the angle
counterterms on the other hand. This can be achieved by using the pinched scheme which is
based on the pinch technique (PT) [92–97]. A short introduction to the PT is presented in
App. B.

In [98], the sfermion mixing angle counterterm �✓ was defined through the requirement of a
gauge-independent residuum in a one-loop scattering amplitude of sfermions and Z

0 bosons
within the MSSM, which is analogous to the argumentation presented in [99]. In [100], �✓
is defined in a completely di↵erent approach by use of the pinch technique. However, both
schemes lead to the same form of the sfermion mixing angle counterterm, indicating the
equivalence of both approaches within the MSSM. Additionally, a method for the definition
of the CP-even mixing angle counterterm �↵ within the MSSM is presented in [100] with the
help of the PT.

Since the PT has been analyzed thoroughly in the SM [93, 94] and in the MSSM [100], we
want to use it to derive an unambiguous gauge-independent definition of the scalar mixing
angle counterterms. In order to keep the discussion clear, we will present the application of
the PT within the 2HDM in App. C. In this subsection, we will only use the results of this
discussion for a definition of the angle counterterms over the pinched self-energies.

The main idea of the pinched scheme is to improve the definition of the angle counterterms
in Kanemura’s scheme by using the pinched self-energies of the scalar sector instead of the
self-energies ⌃tad in the tadpole scheme. In general, the pinched self-energies of the scalar
doublet (�1,�2) have the form
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h
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(p2)
i

⇠=1
+ ⌃add

�1�2
(p2) , (4.158)

where the superscript “add” denotes additional terms whose explicit forms depend on the
scalar doublets that are chosen. The proper derivation of the pinched self-energies requires
self-energy contributions from all topologies shown in Fig. 4.4, cf. App. C. Therefore, the PT
is only consistent in a scheme which uses the alternative tadpole renormalization of Sec. 4.4.2,
but not the standard tadpole scheme [93].
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The explicit form of the additional terms for the CP-even, CP-odd and charged o↵-diagonal
self-energies, which are needed for the definitions of �↵ and ��, read
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The only freedom in the definition of the angle counterterms through the PT arises in the
choice of scale at which the self-energies are evaluated, which is nothing else than the definition
of what finite parts the angle counterterms will contain. If one sticks to the on-shell approach,
a suitable scale would be the masses of the scalar bosons. We will refer to this scheme as OS-
pinched scheme. A look at the momentum dependence of the additional terms in Eqs. (4.159)
– (4.161) suggests another scale, namely

p
2
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�1

+m
2
�2

2
. (4.162)

This sum of mass squares scale is especially convenient, since all additional terms vanish at
p
2 = p

2
⇤. In reference to [100], we refer to this choice of scale as the p⇤-pinched scheme. In

summary, the angle counterterms for both schemes explicitly read:
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Alternative tadpole scheme, p⇤-pinched
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The angle counterterms in the pinched schemes are per construction manifestly gauge-in-
dependent, although a look at Eqs. (4.163) – (4.168) might suggest the opposite, since the

Renormalisation of mixing angles (2HDM)

We choose to isolate the gauge dependent parts using the pinch technique (PT): the self-energies 
obtained by this procedure will be called pinched self-energies and the renormalisation conditions 
will be called pinched schemes.  

The self energies can be written as
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The angle counterterms in the pinched schemes are per construction manifestly gauge-in-
dependent, although a look at Eqs. (4.163) – (4.168) might suggest the opposite, since the

Cornwall, Papavassiliou, PRD40 (1989) 3474

The Background-Field Method seems to 
contain some of the results of PT for a 
particular choice of the gauge parameter: 
“Putting the quantum gauge parameter equal to one, 
we recover the pinch-technique results as a special 
case of the background-field method. “

Denner, Weiglein, Dittmaier, PRLB333 (1994) 420



Renormalisation of mixing angles - definition of pinched schemes

Before defining the pinched schemes, note that importance of having a GFP-independent definition of the 
mixing angle CTs. The use of the alternative FJ tadpole scheme leads to one-loop decay amplitude which 
when setting the mixing angle CTs to zero, is already a manifestly GFP- independent quantity.  

Consequently, by defining the mixing angle CTs in a GFP-independent scheme, the full partial decay width 
maintains the GFP independence as well.
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The explicit form of the additional terms for the CP-even, CP-odd and charged o↵-diagonal
self-energies, which are needed for the definitions of �↵ and ��, read
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The only freedom in the definition of the angle counterterms through the PT arises in the
choice of scale at which the self-energies are evaluated, which is nothing else than the definition
of what finite parts the angle counterterms will contain. If one sticks to the on-shell approach,
a suitable scale would be the masses of the scalar bosons. We will refer to this scheme as OS-
pinched scheme. A look at the momentum dependence of the additional terms in Eqs. (4.159)
– (4.161) suggests another scale, namely
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The angle counterterms in the pinched schemes are per construction manifestly gauge-in-
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4.8. Renormalization of the Scalar Mixing Angles ↵ and � 51

The explicit form of the additional terms for the CP-even, CP-odd and charged o↵-diagonal
self-energies, which are needed for the definitions of �↵ and ��, read

⌃add
H0h0(p2) =

g
2s��↵c��↵

32⇡2c2W

✓
p
2
�

m
2
H0 +m

2
h0

2

◆⇢⇥
B0(p

2;m2
Z ,m

2
A0)�B0(p

2;m2
Z ,m

2
Z)

⇤

+ 2c2W
⇥
B0(p

2;m2
W ,m

2
H±)�B0(p

2;m2
W ,m

2
W )

⇤�
,

(4.159)

⌃add
G0A0(p2) =

g
2s��↵c��↵

32⇡2c2W

✓
p
2
�

m
2
A0

2

◆⇥
B0(p

2;m2
Z ,m

2
H0)�B0(p

2;m2
Z ,m

2
h0)

⇤
, (4.160)

⌃add
G±H±(p2) =

g
2s��↵c��↵

16⇡2

✓
p
2
�

m
2
H±

2

◆⇥
B0(p

2;m2
W ,m

2
H0)�B0(p

2;m2
W ,m

2
h0)

⇤
. (4.161)

The only freedom in the definition of the angle counterterms through the PT arises in the
choice of scale at which the self-energies are evaluated, which is nothing else than the definition
of what finite parts the angle counterterms will contain. If one sticks to the on-shell approach,
a suitable scale would be the masses of the scalar bosons. We will refer to this scheme as OS-
pinched scheme. A look at the momentum dependence of the additional terms in Eqs. (4.159)
– (4.161) suggests another scale, namely

p
2
⇤ =

m
2
�1

+m
2
�2

2
. (4.162)

This sum of mass squares scale is especially convenient, since all additional terms vanish at
p
2 = p

2
⇤. In reference to [100], we refer to this choice of scale as the p⇤-pinched scheme. In

summary, the angle counterterms for both schemes explicitly read:

Alternative tadpole scheme, OS-pinched

�↵ =
Re

h ⇥
⌃tad
H0h0(m2

H0) + ⌃tad
H0h0(m2

h0)
⇤
⇠=1

+ ⌃add
H0h0(m2

H0) + ⌃add
H0h0(m2

h0)
i

2
�
m

2
H0 �m

2
h0

� , (4.163)

��
(1) = �

Re
h ⇥

⌃tad
G0A0(m2

A0) + ⌃tad
G0A0(0)

⇤
⇠=1

+ ⌃add
G0A0(m2

A0) + ⌃add
G0A0(0)

i

2m2
A0

, (4.164)

��
(2) = �

Re
h ⇥

⌃tad
G±H±(m2

H±) + ⌃tad
G±H±(0)

⇤
⇠=1

+ ⌃add
G±H±(m2

H±) + ⌃add
G±H±(0)

i

2m2
H±

. (4.165)

Alternative tadpole scheme, p⇤-pinched

�↵ =
1

m
2
H0 �m

2
h0

Re


⌃tad
H0h0

✓
m

2
H0 +m

2
h0

2

◆�

⇠=1

, (4.166)

��
(1) = �

1

m
2
A0

Re


⌃tad
G0A0

✓
m

2
A0

2

◆�

⇠=1

, (4.167)

��
(2) = �

1

m
2
H±

Re


⌃tad
G±H±

✓
m

2
H±

2

◆�

⇠=1

. (4.168)

The angle counterterms in the pinched schemes are per construction manifestly gauge-in-
dependent, although a look at Eqs. (4.163) – (4.168) might suggest the opposite, since the

The pOS pinched scheme leads to the following definition of the counterterms

while the p* pinched scheme leads to

Espinosa, Yamada, Phys. Rev. D67 (2003) 036003

Used for the MSSM in

4.8. Renormalization of the Scalar Mixing Angles ↵ and � 51

The explicit form of the additional terms for the CP-even, CP-odd and charged o↵-diagonal
self-energies, which are needed for the definitions of �↵ and ��, read

⌃add
H0h0(p2) =

g
2s��↵c��↵

32⇡2c2W

✓
p
2
�

m
2
H0 +m

2
h0

2

◆⇢⇥
B0(p

2;m2
Z ,m

2
A0)�B0(p

2;m2
Z ,m

2
Z)

⇤

+ 2c2W
⇥
B0(p

2;m2
W ,m

2
H±)�B0(p

2;m2
W ,m

2
W )

⇤�
,

(4.159)

⌃add
G0A0(p2) =

g
2s��↵c��↵

32⇡2c2W

✓
p
2
�

m
2
A0

2

◆⇥
B0(p

2;m2
Z ,m

2
H0)�B0(p

2;m2
Z ,m

2
h0)

⇤
, (4.160)

⌃add
G±H±(p2) =

g
2s��↵c��↵

16⇡2

✓
p
2
�

m
2
H±

2

◆⇥
B0(p

2;m2
W ,m

2
H0)�B0(p

2;m2
W ,m

2
h0)

⇤
. (4.161)

The only freedom in the definition of the angle counterterms through the PT arises in the
choice of scale at which the self-energies are evaluated, which is nothing else than the definition
of what finite parts the angle counterterms will contain. If one sticks to the on-shell approach,
a suitable scale would be the masses of the scalar bosons. We will refer to this scheme as OS-
pinched scheme. A look at the momentum dependence of the additional terms in Eqs. (4.159)
– (4.161) suggests another scale, namely

p
2
⇤ =

m
2
�1

+m
2
�2

2
. (4.162)

This sum of mass squares scale is especially convenient, since all additional terms vanish at
p
2 = p

2
⇤. In reference to [100], we refer to this choice of scale as the p⇤-pinched scheme. In

summary, the angle counterterms for both schemes explicitly read:

Alternative tadpole scheme, OS-pinched

�↵ =
Re

h ⇥
⌃tad
H0h0(m2

H0) + ⌃tad
H0h0(m2

h0)
⇤
⇠=1

+ ⌃add
H0h0(m2

H0) + ⌃add
H0h0(m2

h0)
i

2
�
m

2
H0 �m

2
h0

� , (4.163)

��
(1) = �

Re
h ⇥

⌃tad
G0A0(m2

A0) + ⌃tad
G0A0(0)

⇤
⇠=1

+ ⌃add
G0A0(m2

A0) + ⌃add
G0A0(0)

i

2m2
A0

, (4.164)

��
(2) = �

Re
h ⇥

⌃tad
G±H±(m2

H±) + ⌃tad
G±H±(0)

⇤
⇠=1

+ ⌃add
G±H±(m2

H±) + ⌃add
G±H±(0)

i

2m2
H±

. (4.165)

Alternative tadpole scheme, p⇤-pinched

�↵ =
1

m
2
H0 �m

2
h0

Re


⌃tad
H0h0

✓
m

2
H0 +m

2
h0

2

◆�

⇠=1

, (4.166)

��
(1) = �

1

m
2
A0

Re


⌃tad
G0A0

✓
m

2
A0

2

◆�

⇠=1

, (4.167)

��
(2) = �

1

m
2
H±

Re


⌃tad
G±H±

✓
m

2
H±

2

◆�

⇠=1

. (4.168)

The angle counterterms in the pinched schemes are per construction manifestly gauge-in-
dependent, although a look at Eqs. (4.163) – (4.168) might suggest the opposite, since the



Renormalisation of mixing angles (N2HDM)

In the N2HDM the charged and pseudo scalar sectors are exactly the same. So are the renormalisation 
conditions.
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The field renormalization matrix in the mass basis can be parametrized as
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where δCij = δCji in agreement with the fact that
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while the auxiliary counterterms δCij do not play a role in the remainder of the discussion.

The definition of the counterterm δβ can be taken over from the 2HDM. It is derived

analogously to the δαi, but from the charged and CP-odd Higgs sectors. In this case, there

are altogether four off-diagonal wave function constants, while only three free parameters

to be fixed. For details, we refer to ref. [36]. There we proposed two different possible

counterterm choices for β, one based on the charged and the other on the CP-odd sector.

Also here we will apply these two possible choices, given by
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All wave function renormalization constants appearing in the counterterms eqs. (5.20),

(5.21) and (5.22) are renormalized in the OS scheme and given by the corresponding entries
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back again. For the CP-even sector of the N2HDM this means,
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The field renormalization matrix in the mass basis can be parametrized as

√
ZHi =R(δαi)
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δZH1H1
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⎟⎠= (5.19)
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−cα3δα2+sα3cα2δα1+δC31 −δα3−sα2δα1+δC32 1+
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2

⎞

⎟⎠,

where δCij = δCji in agreement with the fact that
√

Zρi is a symmetric matrix. By identify-

ing the off-diagonal elements with the off-diagonal wave function renormalization constants

δZHiHj/2 (i ̸= j), the three neutral CP-even angular counterterms are obtained as

δα1 =
cα3

4 cα2

(δZH1H2 − δZH2H1)−
sα3

4 cα2

(δZH1H3 − δZH3H1)

δα2 =
cα3

4
(δZH1H3 − δZH3H1) +

sα3

4
(δZH1H2 − δZH2H1) (5.20)

δα3 =
1

4
(δZH2H3 − δZH3H2) +

sα2

4cα2

[sα3 (δZH1H3 − δZH3H1)− cα3 (δZH1H2 − δZH2H1)] ,

while the auxiliary counterterms δCij do not play a role in the remainder of the discussion.

The definition of the counterterm δβ can be taken over from the 2HDM. It is derived

analogously to the δαi, but from the charged and CP-odd Higgs sectors. In this case, there

are altogether four off-diagonal wave function constants, while only three free parameters

to be fixed. For details, we refer to ref. [36]. There we proposed two different possible

counterterm choices for β, one based on the charged and the other on the CP-odd sector.

Also here we will apply these two possible choices, given by

δβ(1) =
1

4
(δZG±H± − δZH±G±) (5.21)

and

δβ(2) =
1

4
(δZG0A − δZAG0) . (5.22)

All wave function renormalization constants appearing in the counterterms eqs. (5.20),

(5.21) and (5.22) are renormalized in the OS scheme and given by the corresponding entries

– 22 –

and then we just proceed as in the 2HDM.



Process dependent (for any of the models)

Process dependent: renormalisation of tanβ using the decay   (that depends only on SM 
parameters and on tanβ)

A → τ+τ−
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Figure 4.6.: All NLO vertex corrections to the decays A
0

�! ⌧
+

⌧
�. All virtual

vertex corrections AVC
A0⌧+⌧� are shown, grouped by their topological structure. The diagrams

contain contributions from fermions F , scalar bosons S and gauge bosons V . Diagrams
involving an internal photon contain IR divergences.

angle counterterm �� over this process will contain IR-divergent parts. As a consequence, ��
will depend on experimental cuts on the phase-space of the real photon emissions, cf. Sec. 5.3,
which is unacceptable [36].

In the 2HDM, the process H
+

�! W
+

H
0 was used as a process-dependent definition of

the combination of mixing angle counterterms �(� � ↵) in the approximation of heavy top
and bottom quarks [114]. While such a scheme works fine as long as the one-loop vertex
corrections contain only the top and bottom quarks, it introduces the same di�culty as the
process mentioned above as soon as the full electroweak vertex corrections are taken into
account. In that case, the definition of �(��↵) would again necessarily contain IR-divergent
parts.

What has instead been proposed in [36] is the definition of �� over the process A0
�! ⌧

+
⌧
�.

While in the paper the process is considered within the MSSM, we will adopt the scheme
in order to renormalize �� in the 2HDM. The process has the advantage that the QED
corrections form a UV-finite subset by themselves. Since it is exactly the QED subset of the
amplitude that contains the IR divergences, the idea is to isolate the purely weak corrections
from the QED corrections and only use the former for the process-dependent definition of the
angle counterterm.

We consider the on-shell process A
0

�! ⌧
+

⌧
�. Using the generic notation of Chapter 3,

we denote with ū(p3) the adjoint spinor of the outgoing ⌧
� with momentum p3 and spin s3

and with v(p2) the spinor of the outgoing ⌧
+ with momentum p2 and spin s2. The LO decay

amplitude is given by

A
LO
A0⌧⌧

=
iem⌧Y3

2mW sW
ū(p3)�

5
v(p2) . (4.169)

The factor Y3 contains the Yukawa coupling as given in Sec. 8.2 whose specific form depends
on the 2HDM type that is chosen. In order to calculate the LO partial decay width, we insert
the LO amplitude into Eq. (3.3). The spin configuration of the fermions in the final state is
of no interest for us, therefore, we use the spin sum [5]

X

s2,s3

ū(p3)�
5
v(p2)v̄(p2)(��

5)u(p3) = Tr
h
�(/p2 �m⌧ )�

5(/p3 +m⌧ )�
5
i
= 2m2

A0 (4.170)

Freitas, Stöckinger, PRD66 (2002) 095014
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vertex corrections AVC
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contain contributions from fermions F , scalar bosons S and gauge bosons V . Diagrams
involving an internal photon contain IR divergences.

angle counterterm �� over this process will contain IR-divergent parts. As a consequence, ��
will depend on experimental cuts on the phase-space of the real photon emissions, cf. Sec. 5.3,
which is unacceptable [36].

In the 2HDM, the process H
+

�! W
+

H
0 was used as a process-dependent definition of

the combination of mixing angle counterterms �(� � ↵) in the approximation of heavy top
and bottom quarks [114]. While such a scheme works fine as long as the one-loop vertex
corrections contain only the top and bottom quarks, it introduces the same di�culty as the
process mentioned above as soon as the full electroweak vertex corrections are taken into
account. In that case, the definition of �(��↵) would again necessarily contain IR-divergent
parts.

What has instead been proposed in [36] is the definition of �� over the process A0
�! ⌧

+
⌧
�.

While in the paper the process is considered within the MSSM, we will adopt the scheme
in order to renormalize �� in the 2HDM. The process has the advantage that the QED
corrections form a UV-finite subset by themselves. Since it is exactly the QED subset of the
amplitude that contains the IR divergences, the idea is to isolate the purely weak corrections
from the QED corrections and only use the former for the process-dependent definition of the
angle counterterm.

We consider the on-shell process A
0

�! ⌧
+

⌧
�. Using the generic notation of Chapter 3,

we denote with ū(p3) the adjoint spinor of the outgoing ⌧
� with momentum p3 and spin s3

and with v(p2) the spinor of the outgoing ⌧
+ with momentum p2 and spin s2. The LO decay

amplitude is given by

A
LO
A0⌧⌧

=
iem⌧Y3

2mW sW
ū(p3)�

5
v(p2) . (4.169)

The factor Y3 contains the Yukawa coupling as given in Sec. 8.2 whose specific form depends
on the 2HDM type that is chosen. In order to calculate the LO partial decay width, we insert
the LO amplitude into Eq. (3.3). The spin configuration of the fermions in the final state is
of no interest for us, therefore, we use the spin sum [5]
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The process has the advantage that the QED corrections form a UV-finite subset by themselves. Since it 
is exactly the QED subset of the amplitude that contains the IR divergences, the idea is to isolate the 
purely weak corrections from the QED corrections and only use the former for the process dependent 
definition of the angle counterterm. 
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Figure 4.7.: Diagrammatic contributions to the UV-finite QED subset. Shown are
all diagrams of the QED sector that have to be excluded in the process-dependent definition
of the mixing angles. Diagram (a) appears in the definition of the counterterms �m⌧ , �Z

L
⌧⌧

and �Z
R
⌧⌧ , while (b) and (c) are parts of the vertex corrections A1loop

A0⌧⌧
and A

1loop
H0⌧⌧

, respectively.

to sum over all degrees of freedom. Inserting the LO amplitude into Eq. (3.7) and using this
spin sum yields the LO partial decay width of the process A0

�! ⌧
+
⌧
�:

�LO
A0⌧⌧

=
g
2
Y

2
3 m

2
⌧mA0

32⇡m2
W

s

1�
4m2

⌧

m
2
A0

. (4.171)

At NLO, the one-loop amplitude consists of all virtual vertex corrections A
VC
A0⌧⌧

, the vertex

counterterm A
CT
A0⌧⌧

and all virtual external leg corrections A
leg,i
A0⌧⌧

(i = 1, ..., 5) as shown in
Fig. 4.5. The first three external leg corrections vanish due to the on-shell renormalization
conditions presented in Sec. 4.5 and Sec. 4.6. The fourth external leg corrections vanishes
due to CP-conservation for the on-shell A0 boson and the fifth correction vanishes because of
a Slavnov-Taylor identity [115]. Hence, the one-loop amplitude consists of the virtual vertex
corrections and the vertex counterterm. In both amplitudes, the LO amplitude of Eq. (4.169)
factorizes out, yielding

A
1loop
A0⌧⌧

= A
VC
A0⌧⌧

+A
CT
A0⌧⌧

= A
LO
A0⌧⌧

⇥
F

VC
A0⌧⌧

+ F
CT
A0⌧⌧

⇤
. (4.172)

The form factor F
VC
A0⌧⌧

of the vertex corrections is determined by the sum of the diagrams
shown in Fig. 4.6, while the form factor of the vertex counterterm has the explicit form [52,79]

F
CT
A0⌧⌧

=
�g

g
+

�m⌧

m⌧

�
�m

2
W

2m2
W

+
1 + Y

2
3

Y3
�� +

�ZA0A0

2
�

1

Y3

�ZG0A0

2
+

�Z
L
⌧⌧

2
+

�Z
R
⌧⌧

2
. (4.173)

Note that we demand that both form factors contain contributions from the weak sector
only [36], meaning that for the definition of the counterterms �m⌧ , �Z

L
⌧⌧ and �Z

R
⌧⌧ , the self-

energy diagram of Fig. 4.7 (a) has to be excluded, while for the vertex corrections, the diagram
of Fig. 4.7 (b) is omitted. The sum of these diagrams contains all IR divergences of the
process and forms a UV-finite subset in Eq. (4.172), which has been checked analytically and
numerically. Therefore, this subset can be omitted without spoiling the overall UV-finiteness
of the process, thus removing all IR divergences from the amplitude.

Inserting the LO and one-loop amplitude into Eq. (3.12) yields the NLO partial decay width,
which simplifies due to the fact that the LO amplitude factorizes completely:

�NLO,weak
A0⌧⌧

= �LO
A0⌧⌧

✓
1 + 2 Re

h
F

VC
A0⌧⌧

+ F
CT
A0⌧⌧

i◆
. (4.174)

The superscript “weak” indicates that the form factors contain contributions from the weak
sector only, with all QED contributions being omitted. The counterterm �� can be defined
via the process by demanding that the one-loop contributions to the partial decay width shall
vanish, so that

�LO
A0⌧⌧

!
= �NLO,weak

A0⌧⌧
(4.175)
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to sum over all degrees of freedom. Inserting the LO amplitude into Eq. (3.7) and using this
spin sum yields the LO partial decay width of the process A0
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At NLO, the one-loop amplitude consists of all virtual vertex corrections A
VC
A0⌧⌧

, the vertex

counterterm A
CT
A0⌧⌧

and all virtual external leg corrections A
leg,i
A0⌧⌧

(i = 1, ..., 5) as shown in
Fig. 4.5. The first three external leg corrections vanish due to the on-shell renormalization
conditions presented in Sec. 4.5 and Sec. 4.6. The fourth external leg corrections vanishes
due to CP-conservation for the on-shell A0 boson and the fifth correction vanishes because of
a Slavnov-Taylor identity [115]. Hence, the one-loop amplitude consists of the virtual vertex
corrections and the vertex counterterm. In both amplitudes, the LO amplitude of Eq. (4.169)
factorizes out, yielding
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The form factor F
VC
A0⌧⌧

of the vertex corrections is determined by the sum of the diagrams
shown in Fig. 4.6, while the form factor of the vertex counterterm has the explicit form [52,79]
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Note that we demand that both form factors contain contributions from the weak sector
only [36], meaning that for the definition of the counterterms �m⌧ , �Z

L
⌧⌧ and �Z

R
⌧⌧ , the self-

energy diagram of Fig. 4.7 (a) has to be excluded, while for the vertex corrections, the diagram
of Fig. 4.7 (b) is omitted. The sum of these diagrams contains all IR divergences of the
process and forms a UV-finite subset in Eq. (4.172), which has been checked analytically and
numerically. Therefore, this subset can be omitted without spoiling the overall UV-finiteness
of the process, thus removing all IR divergences from the amplitude.

Inserting the LO and one-loop amplitude into Eq. (3.12) yields the NLO partial decay width,
which simplifies due to the fact that the LO amplitude factorizes completely:
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The superscript “weak” indicates that the form factors contain contributions from the weak
sector only, with all QED contributions being omitted. The counterterm �� can be defined
via the process by demanding that the one-loop contributions to the partial decay width shall
vanish, so that

�LO
A0⌧⌧

!
= �NLO,weak

A0⌧⌧
(4.175)

The one-loop amplitude for the process and the counterterms are

The   counterterm is then fixed by the conditionδβ
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to sum over all degrees of freedom. Inserting the LO amplitude into Eq. (3.7) and using this
spin sum yields the LO partial decay width of the process A0
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At NLO, the one-loop amplitude consists of all virtual vertex corrections A
VC
A0⌧⌧

, the vertex

counterterm A
CT
A0⌧⌧

and all virtual external leg corrections A
leg,i
A0⌧⌧

(i = 1, ..., 5) as shown in
Fig. 4.5. The first three external leg corrections vanish due to the on-shell renormalization
conditions presented in Sec. 4.5 and Sec. 4.6. The fourth external leg corrections vanishes
due to CP-conservation for the on-shell A0 boson and the fifth correction vanishes because of
a Slavnov-Taylor identity [115]. Hence, the one-loop amplitude consists of the virtual vertex
corrections and the vertex counterterm. In both amplitudes, the LO amplitude of Eq. (4.169)
factorizes out, yielding
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The form factor F
VC
A0⌧⌧

of the vertex corrections is determined by the sum of the diagrams
shown in Fig. 4.6, while the form factor of the vertex counterterm has the explicit form [52,79]
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Note that we demand that both form factors contain contributions from the weak sector
only [36], meaning that for the definition of the counterterms �m⌧ , �Z

L
⌧⌧ and �Z

R
⌧⌧ , the self-

energy diagram of Fig. 4.7 (a) has to be excluded, while for the vertex corrections, the diagram
of Fig. 4.7 (b) is omitted. The sum of these diagrams contains all IR divergences of the
process and forms a UV-finite subset in Eq. (4.172), which has been checked analytically and
numerically. Therefore, this subset can be omitted without spoiling the overall UV-finiteness
of the process, thus removing all IR divergences from the amplitude.

Inserting the LO and one-loop amplitude into Eq. (3.12) yields the NLO partial decay width,
which simplifies due to the fact that the LO amplitude factorizes completely:
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The superscript “weak” indicates that the form factors contain contributions from the weak
sector only, with all QED contributions being omitted. The counterterm �� can be defined
via the process by demanding that the one-loop contributions to the partial decay width shall
vanish, so that

�LO
A0⌧⌧

!
= �NLO,weak

A0⌧⌧
(4.175)

giving
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Figure 4.9.: All NLO vertex corrections to the decays H
0
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⌧
�. All virtual

vertex corrections AVC
H0⌧+⌧� are shown, grouped by their topological structure. The diagrams

contain contributions from fermions F , scalar bosons S and gauge bosons V . Diagrams
involving an internal photon contain IR divergences.

The form factor of the vertex corrections, FVC
H0⌧⌧

, has to be determined via the calculation of
all diagrams shown in Fig. 4.9, while the form factor of the counterterm explicitly reads [52,79]
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2
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(4.181)

with the Yukawa coupling Y1 being defined in Sec. 8.2. The counterterm �� appearing in the
vertex counterterm is fixed through Eq. (4.176). As it was the case for the previous process, we
exclude all QED contributions to the one-loop amplitude [36], meaning that for the definitions
of �m⌧ , �Z

L
⌧⌧ and �Z

R
⌧⌧ , the self-energy in Fig. 4.7 (a) has to be excluded, while the vertex

corrections do not contain the diagram in Fig. 4.7 (c). Applying the renormalization condition

�LO
H0⌧⌧

!
= �NLO,weak

H0⌧⌧
(4.182)

allows for a process-dependent definition of the scalar mixing angle by solving for �↵. In
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The headline in the box indicates that the definition of �↵ and �� is valid for both the standard
and the alternative tadpole scheme. So far, we did not specify which tadpole scheme is used
for the process-dependent definition of the angle counterterms. The form factors FVC

A0⌧⌧
and
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The elementary charge:

For the purpose of evaluating decay widths at NLO, it is su�cient to consider the
tree-level value of the electric charge. The most precise measurement is given by the
value of Sommerfeld’s fine-structure constant ↵em in the Thomson limit, which currently
reads [46]

↵em =
1

137.035999074
. (8.2)

The FeynArts model file uses the elementary charge e instead of the fine-structure
constant as an input parameter. In natural units, the conversion, and hence the value
of e, is given by

e =
p
4⇡↵em = 0.30282212089 . (8.3)

The CKM matrix elements:

The CP-violating phase in the CKM matrix is considered to be zero for all calculations
performed in this thesis. Consequently, we consider the matrix to be real. The values
of all entries of the CKM matrix are given by [46]

VCKM =

0

BBBB@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

CCCCA
=

0

BBBB@

0.97427 0.22536 0.00355

�0.22522 0.97343 0.0414

0.00886 �0.0405 0.99914

1

CCCCA
. (8.4)

Yukawa coupling constants of the 2HDM:

The couplings between the fermions and the Higgs bosons is parametrized in the 2HDM
model file in FeynArts in the form of three Yukawa coupling constants Y1, Y2 and Y3.
The actual form of the constants is expressed through trigonometric combinations of
the mixing angles ↵ and � and depends on the chosen 2HDM type. For the two 2HDM
types that we presented in Sec. 2.6, the coupling constants explicitly read [57]:

2HDM type Y1 Y2 Y3

I
c↵
s�

s↵
s�

�
1

t�

II �
s↵
c�

c↵
c�

t�

Detector sensitivity �E: For the processes H
+

�! W
+

h
0
/H

0, we included
real corrections into the NLO partial decay width in order to cancel all occurring IR
divergences, cf. Sec. 5.3. As a consequence, we added the NLO soft-photon corrections
in Eqs. (5.18) and (5.19) to the virtual NLO partial decay width. The former depend
explicitly on the detector sensitivity �E. It was shown in [91] that this dependence is
small. Within the scope of this thesis, we fix the value to

�E = 10 GeV . (8.5)

The other parameters that have to be set are the missing masses of the extended scalar sector
of the 2HDM, namely mH0 , mA0 and mH± , as well as the scalar mixing angles ↵ and �

and the parameter ⇤5. We consider those as our free parameters. In principle, we could set



Process 1 - define δβ via  and subsequently δα via   
Process 2 - define δβ via  and subsequently δα via   
Process 3 - define δα and δβ simultaneously via   and  

A → τ+τ− H → τ+τ−

A → τ+τ− h → τ+τ−

H → τ+τ− h → τ+τ−

We can then use, for instance, the decay   (that depends on SM parameters plus on α and β), 
using the previous definition of the angle β.

H → τ+τ−

The process dependent schemes that were chosen to be included in the 2HDECAY code are

Process dependent (for any of the models)
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Figure 4.9.: All NLO vertex corrections to the decays H
0
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vertex corrections AVC
H0⌧+⌧� are shown, grouped by their topological structure. The diagrams

contain contributions from fermions F , scalar bosons S and gauge bosons V . Diagrams
involving an internal photon contain IR divergences.

The form factor of the vertex corrections, FVC
H0⌧⌧

, has to be determined via the calculation of
all diagrams shown in Fig. 4.9, while the form factor of the counterterm explicitly reads [52,79]
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with the Yukawa coupling Y1 being defined in Sec. 8.2. The counterterm �� appearing in the
vertex counterterm is fixed through Eq. (4.176). As it was the case for the previous process, we
exclude all QED contributions to the one-loop amplitude [36], meaning that for the definitions
of �m⌧ , �Z

L
⌧⌧ and �Z

R
⌧⌧ , the self-energy in Fig. 4.7 (a) has to be excluded, while the vertex

corrections do not contain the diagram in Fig. 4.7 (c). Applying the renormalization condition
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!
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(4.182)

allows for a process-dependent definition of the scalar mixing angle by solving for �↵. In
summary, the two angle counterterms read:
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The headline in the box indicates that the definition of �↵ and �� is valid for both the standard
and the alternative tadpole scheme. So far, we did not specify which tadpole scheme is used
for the process-dependent definition of the angle counterterms. The form factors FVC

A0⌧⌧
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The form factor of the vertex corrections, FVC
H0⌧⌧

, has to be determined via the calculation of
all diagrams shown in Fig. 4.9, while the form factor of the counterterm explicitly reads [52,79]
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with the Yukawa coupling Y1 being defined in Sec. 8.2. The counterterm �� appearing in the
vertex counterterm is fixed through Eq. (4.176). As it was the case for the previous process, we
exclude all QED contributions to the one-loop amplitude [36], meaning that for the definitions
of �m⌧ , �Z

L
⌧⌧ and �Z

R
⌧⌧ , the self-energy in Fig. 4.7 (a) has to be excluded, while the vertex

corrections do not contain the diagram in Fig. 4.7 (c). Applying the renormalization condition
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allows for a process-dependent definition of the scalar mixing angle by solving for �↵. In
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The headline in the box indicates that the definition of �↵ and �� is valid for both the standard
and the alternative tadpole scheme. So far, we did not specify which tadpole scheme is used
for the process-dependent definition of the angle counterterms. The form factors FVC
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contain contributions from fermions F , scalar bosons S and gauge bosons V . Diagrams
involving an internal photon contain IR divergences.

The form factor of the vertex corrections, FVC
H0⌧⌧

, has to be determined via the calculation of
all diagrams shown in Fig. 4.9, while the form factor of the counterterm explicitly reads [52,79]
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with the Yukawa coupling Y1 being defined in Sec. 8.2. The counterterm �� appearing in the
vertex counterterm is fixed through Eq. (4.176). As it was the case for the previous process, we
exclude all QED contributions to the one-loop amplitude [36], meaning that for the definitions
of �m⌧ , �Z

L
⌧⌧ and �Z

R
⌧⌧ , the self-energy in Fig. 4.7 (a) has to be excluded, while the vertex

corrections do not contain the diagram in Fig. 4.7 (c). Applying the renormalization condition
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allows for a process-dependent definition of the scalar mixing angle by solving for �↵. In
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The headline in the box indicates that the definition of �↵ and �� is valid for both the standard
and the alternative tadpole scheme. So far, we did not specify which tadpole scheme is used
for the process-dependent definition of the angle counterterms. The form factors FVC

A0⌧⌧
and

The one-loop amplitude for the process and the counterterms are

The delta beta counterterm is then fixed by the condition

and

Krause, Mühlleitner, Spira, CPC (2019) 2HDECAY.
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Figure 4.8.: NLO virtual corrections to the decays H
0

�! ⌧
+

⌧
�. The one-loop

amplitude A
1loop
H0⌧⌧

consists of all virtual vertex corrections A
VC
H0⌧⌧

, the vertex counterterm

A
CT
H0⌧⌧

as well as the external leg corrections Aleg,i
H0⌧⌧

(i = 1, ..., 5).

holds. Inserting Eqs. (4.173) and (4.174) into this renormalization condition allows us to solve
for the angle counterterm:
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In contrast to the MSSM, where only the mixing angle � needs to be renormalized, the 2HDM
requires an additional process in order to fix the angle counterterm �↵. Following the same
arguments as above, we choose the decay H

0
�! ⌧

+
⌧
�, since the QED contributions form

a UV-finite subset in this process as well. The LO amplitude of the decay is given by

A
LO
H0⌧⌧

=
�em⌧Y2

2mW sW
ū(p3)v(p2) , (4.177)

where Y2 is the Yukawa coupling constant defined in Sec. 8.2. For the calculation of the LO
partial decay width, we use the spin sum [5]

X

s2,s3

ū(p3)v(p2)v̄(p2)u(p3) = Tr
h
(/p2 �m⌧ )(/p3 +m⌧ )

i
= 2m2

H0 � 8m2
⌧ . (4.178)

Inserting the LO amplitude into Eq. (3.7) and using the spin sum, the LO partial decay width
explicitly reads
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. (4.179)

Analogous to the decay of the pseudoscalar Higgs boson A
0, the one-loop amplitude of the

process H0
�! ⌧

+
⌧
� consists of the virtual vertex corrections, the vertex counterterm and

virtual external leg corrections, all shown in Fig. 4.8. The latter vanish completely due to
the same reasons as for the external leg corrections of the process A0

�! ⌧
+
⌧
�, and again,

the LO amplitude factorizes from the vertex corrections as well as the counterterm, giving:

A
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. (4.180)
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Renormalization of �↵ and ��: physical (on-shell) scheme OS12 (both schemes)
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The genuine factorized vertex corrections �H⌫i⌫̄i
, �h⌫i⌫̄i and �A⌫i⌫̄i

(all for i = 1, 2) to the
couplings of the Higgs bosons with the massive neutrinos are presented in App.D of [216].

B.5.7. Rigid Symmetry Scheme (BFMS scheme)

The definition of the rigid symmetry scheme (BFMS scheme) from [216] is formally indepen-
dent of the renormalization scheme. The mixing angle CTs are defined through alternative
WFRCs which are introduced in the symmetric phase of the potential in the framework of
the BFM. In this scheme, the CTs are given by

Renormalization of �↵ and ��: BFMS scheme (alternative FJ scheme)
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B.6. One-Loop Renormalization Constant of the Soft-Z2-Break-
ing Parameter m2

12

As a genuine parameter of the tree-level 2HDM potential, the soft-Z2-breaking parameter
m

2
12 and its CT are independent of the tadpole renormalization and the latter reads
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where we sum over all up-type (u) and down-type (d) quarks and charged leptons (l).

C.6. One-Loop Renormalization Constant of the Soft-Z2-Breaking Parameter m2
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where the short-hand notations O
(x)
HiHj

(x = 1, 2, 3) are introduced in Eqs. (9.30) to (9.32).
While some of these additional self-energy contributions are UV-divergent, they only appear
in the definition of the mixing angle CTs in combinations which are explicitly UV-finite.

C.6. One-Loop Renormalization Constant of the Soft-Z2-Break-
ing Parameter m2

12

As a genuine parameter of the tree-level N2HDM potential, the soft-Z2-breaking parameter
m

2
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where we sum over all up-type (u) and down-type (d) quarks and charged leptons (l).

C.7. One-Loop Renormalization Constant of vs

The CT �vs of the singlet VEV is renormalized in an MS scheme. In the standard tadpole
scheme, the CT contains at most finite contributions �vs|fin due to the rigid symmetry of the
potential and hence, we can choose to set the finite contributions to zero. In the alternative
FJ tadpole scheme on the other hand, �vs contains UV-divergent contributions but since
we apply an MS scheme, its finite contributions vanish again. Consequently, the CT in both
schemes is given by

Renormalization of the tree-level vs (both schemes)

�vs|fin = 0 . (C.51)

Due to its intricate analytic structure, we do not state the UV-divergent part of the CT in
the alternative FJ tadpole scheme explicitly.

The only remaining independent parameters which requires renormalisation are the soft-Z2 breaking 
parameter  , and the VEVs.  

Since   appears in the trilinear and quartic Higgs couplings, the counterterm could be fix via a Higgs to 
Higgs decay process. We found this leads to huge NLO contributions. 

So we fix the CT in the  scheme. This implies that the value of the renormalisation scale µR has to be 
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where the short-hand notations O
(x)
HiHj

(x = 1, 2, 3) are introduced in Eqs. (9.30) to (9.32).
While some of these additional self-energy contributions are UV-divergent, they only appear
in the definition of the mixing angle CTs in combinations which are explicitly UV-finite.
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where we sum over all up-type (u) and down-type (d) quarks and charged leptons (l).
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The CT �vs of the singlet VEV is renormalized in an MS scheme. In the standard tadpole
scheme, the CT contains at most finite contributions �vs|fin due to the rigid symmetry of the
potential and hence, we can choose to set the finite contributions to zero. In the alternative
FJ tadpole scheme on the other hand, �vs contains UV-divergent contributions but since
we apply an MS scheme, its finite contributions vanish again. Consequently, the CT in both
schemes is given by
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Due to its intricate analytic structure, we do not state the UV-divergent part of the CT in
the alternative FJ tadpole scheme explicitly.
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, �h⌫i⌫̄i and �A⌫i⌫̄i

(all for i = 1, 2) to the
couplings of the Higgs bosons with the massive neutrinos are presented in App.D of [216].

B.5.7. Rigid Symmetry Scheme (BFMS scheme)

The definition of the rigid symmetry scheme (BFMS scheme) from [216] is formally indepen-
dent of the renormalization scheme. The mixing angle CTs are defined through alternative
WFRCs which are introduced in the symmetric phase of the potential in the framework of
the BFM. In this scheme, the CTs are given by
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where we sum over all up-type (u) and down-type (d) quarks and charged leptons (l).

Infinite parte for the N2HDM

As for the VEVs, v1 and  v2  are replaced by v and tanβ, while vS is renormalised in the  scheme (vS infinity 
too big to show here).

MS



Constraints

Points generated with ScannerS requiring 

    - mhSM =125.09 GeV (others 5 GeV away) 
    - charged Higgs mass above 580 GeV in Type II and Flipped  

- absolute minimum 
- boundedness from below 
- that perturbative unitarity holds 
- S,T and U

The Higgs exclusion limits stemming from experiments at the LEP, Tevatron and 
LHC are checked with HiggsBounds 5.3.2.

The Higgs rates are checked with HiggsSignals 2.2.3 
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Figure 7.2.: Scenario “P2”: Relative correction ��EW as defined in Eq. (7.7) between the
one-loop and tree-level electroweak partial decay width of the decay channel H ! ZZ as a
function of mH (left) and of the decay channel A ! Zh as a function of mA (right) for several
renormalization schemes (for a definition of the abbreviations used, cf. Table 6.1).

allows, among other decay modes, for an OS decay of the heavy CP-even Higgs into a pair of
SM-like Higgs bosons h as well as for an OS decay of the CP-odd Higgs boson into tt̄, Z h and
W

±
H

⌥ final states. In order to analyze the dependence of the BRs on the 2HDM-specific
input parameters, we perform a variation of the masses of the heavy CP-even and the CP-odd
Higgs boson separately, in the ranges specified in the preceding Sec. 7.126.

Figure 7.1 shows the electroweak-corrected BRs of all decay modes of the heavy CP-even
Higgs boson H and of the CP-odd Higgs boson A as a function of either mH or mA on the
left-hand and right-hand sides of the figure, respectively, where the color code denotes the
various final states. The dashed vertical lines indicate the value of the respective Higgs mass
corresponding to its initial value defined in the parameter set “P2”, cf. Eq. (7.5). As can be
inferred from the plots, the BRs strongly depend on the chosen values of mH and mA. For
increasing masses, additional decay channels are realized OS and their corresponding BRs
potentially suppress those of other decay modes. This is the case e.g. for the decay of the
CP-odd Higgs boson A into the Z h final state, with the corresponding BRs exceeding the
BRs of all other decay modes for intermediate values of mA between 220GeV and 330GeV,
and for the decay of the A boson into the final state Z H for values mA > 450GeV. The
heavy CP-even Higgs boson H dominantly decays into pairs of W± or Z bosons for values
of mH below 250GeV. For mH & 2mh, the OS decay of the heavy CP-even Higgs into two
SM-like Higgs bosons becomes kinematically allowed and hence, the BR for this decay channel
becomes relevant for masses mH up to approximately 400GeV. In particular, for scenario
“P2”, this decay channel is the dominant one with a BR of 57%. For values of mH larger
than 400GeV, the BR for the decay into W

±
H

⌥ final states exceeds the BRs of all other
decay channels.

In order to analyze the dependence of the size of the electroweak one-loop corrections to the
partial decay widths on the renormalization scheme of the scalar mixing angles, we again
perform a numerical analysis with the input parameter set “P2” with the same variations of
the masses mH and mA as before. For the analysis performed in this work, we compute the
relative correction ��EW defined in Eq. (7.7) as a function of mH and mA for two specific
decay channels, namely for the decay channels H ! Z Z and A ! Z h, and for five di↵erent

26For some of the figures presented in the following, however, we reduce the range for both parameters for a
better legibility of the plots.

Comparison of schemes (2HDM)

Denner, Dittmaier, Lang, JHEP 11 (2018) 104.
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Parameter set “P1”.
For the SM parameters, the input values presented in Eqs. (7.1) and (7.2) are used, while the
2HDM-specific parameters are set to

mh = 125.09GeV , mH = 381.767GeV , (7.4)

mA = 350.665GeV , mH± = 414.114GeV ,

m
2
12(mhSM

) = 28 505.5GeV2
, ↵|

po⇤
= � 0.189 345 ,

t� |po⇤
= 4.236 35 , 2HDM type = I ,

where for m
2
12, the argument in brackets indicates that the input value is defined at the

scale µR = mhSM
. Moreover, the subscripts denote that the two mixing angles are defined

in the p⇤-pinched (odd) scheme, defined through Eqs. (B.72) and (B.73), as the reference
scheme considered for our numerical analysis. The renormalization scale µout at which the
electroweak partial decay widths are evaluated is set to the mass of the decaying particle for
each decay channel, separately.

Parameter set “P2”.
Analogous to the former set, the input values of the SM parameters are set as presented in
Eqs. (7.1) and (7.2), while the 2HDM-specific parameters are chosen as follows,

mh = 125.09GeV , mH = 302.324GeV , (7.5)

mA = 494.618GeV , mH± = 300.077GeV ,

m
2
12(mhSM

) = 28 328.8GeV2
, ↵|

po⇤
= � 0.200 175 ,

t� |po⇤
= 2.660 82 , 2HDM type = I ,

For an analysis of the size of the electroweak corrections to selected decay channels, we
moreover perform a variation of some of the input parameters of this set:

Variation of mH 2 [130GeV, 550GeV], while all other parameters are given by the
fixed values in Eq. (7.5).

Variation of mA 2 [130GeV, 550GeV], while all other parameters are given by the fixed
values in Eq. (7.5).

These variations of the input parameters can lead to points in the parameter space of the real
2HDM that do not fulfill the aforementioned experimental constraints anymore. Since we do
not perform a dedicated phenomenological analysis in this work, however, we nevertheless
use the parameter sets generated by the variations in order to demonstrate the size of the
electroweak corrections implemented in 2HDECAY and to provide examples for analyses which
can be extended in future work. The renormalization scale µout at which the electroweak
partial decay widths are evaluated is again set to the mass of the decaying particle for each
decay channel, separately.

Parameter sets “P3”.
For another analysis of the size of the electroweak corrections of a selected Higgs decay channel
computed within di↵erent renormalization schemes, we use several additional parameter sets
which we collectively define as the“P3”set. The set includes 15 000 di↵erent parameter points
for a 2HDM type I with large varieties with respect to the values of the masses, mixing angles
and m

2
12, while the SM values are again set according to Eqs. (7.1) and (7.2). We evaluate

the electroweak partial decay widths again at the renormalization scale µout which is set to
the mass of the decaying particle of the respective decay channel. In contrast to the other
two aforementioned parameter sets, the values of the mixing angles in set “P3” are defined
within each considered renormalization scheme separately such that no conversion between

proc 1: δβ viaA→τ+τ− and subsequently δα via H→τ+τ-

Point P2

p* and pOS schemes as previously defined

OS12 and BFMS in (and previous talk by S. Dittmaier)

Krause, Mühlleitner, Spira, CPC (2019) 2HDECAY.

Corrections for point P2 between 9% and 20%.



Uncertainty estimate

Relative difference over large range of the charged Higgs mass between -3.8% and 1.0%, 
and for point P2 the difference is of the order 0.5%.  

Small uncertainty for the considered channel and parameters.

      relative difference 
between different schemes:
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Figure 7.3.: The di↵erence ��EW,x as defined in Eq. (7.8) between the one-loop electroweak
partial decay width of the decay channel H ! ZZ computed in several renormalization
schemes “x” (cf. Table 6.1 for a definition of the abbreviations used) with respect to the one-
loop width as computed in the p⇤-pinched scheme “po⇤”. The di↵erence is presented for the
decay channel H ! Z Z as a function of mH (left-hand side) and for the decay channel
A ! Z h as a function of mA (right-hand side). For the calculation of all values in the plots,
the input parameters were set according to the set “P2”.

renormalization schemes. For each of the five schemes considered in this analysis, the tree-
level and one-loop decay widths entering the calculation of ��EW are always defined in the
same input renormalization scheme. For a direct comparison of the decay widths calculated
within the di↵erent schemes, we convert the input parameters as described in Sec. 6.2. In
Fig. 7.2, we present the relative deviations ��EW between the one-loop and tree-level decay
widths of the two decay channels as a function of mH and mA on the left-hand and right-
hand sides of the figure, respectively. The vertical dashed line indicates the values of mH

and mA corresponding to the respective initial values defined as the parameter set “P2” in
Eq. (7.5). As can be inferred from the plots, the sizes of the electroweak one-loop corrections
are sensitive on the choice of the renormalization scheme for a large range of the Higgs boson
masses. For the mass values corresponding to the set “P2” for instance, the relative size of the
one-loop corrections ��EW to the process H ! Z Z varies between 9% and 20% and for the
process A ! Z h between �3% and 7% for the di↵erent renormalization schemes considered
here.

In order to get a rough estimate of the remaining theoretical uncertainty of the partial decay
widths due to missing higher-order corrections, we compare the decays widths computed in
di↵erent renormalization schemes “x” with the reference scheme that we choose here to be
“po⇤”. We hence compute the relative di↵erence ��EW,x, defined in Eq. (7.8), where we again
compute the tree-level and one-loop partial decay widths in the same renormalization scheme
“x” for each of the considered schemes. In Fig. 7.3 we show the relative di↵erence ��EW,x

for the same two decay channels analyzed before, i.e. for H ! Z Z as a function of mH on
the left-hand side and for A ! Z h as a function of mA on the right-hand side of the figure.
As can be inferred from the plots, the relative di↵erence between the widths computed in the
di↵erent schemes varies between approximately �4% and 1% for the former decay channel
and between approximately �1% and 2% for the latter decay channel over the whole range of
varied masses presented in the plots. We want to emphasize again that for the computation
of the widths within di↵erent renormalization schemes, a parameter conversion as described
in Sec. 3.5 is performed in 2HDECAY which allows for a consistent comparison of the widths
computed within these di↵erent schemes. From the plots, it can be inferred that the relative

H → ZZ
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For the SM parameters, the input values presented in Eqs. (7.1) and (7.2) are used, while the
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in the p⇤-pinched (odd) scheme, defined through Eqs. (B.72) and (B.73), as the reference
scheme considered for our numerical analysis. The renormalization scale µout at which the
electroweak partial decay widths are evaluated is set to the mass of the decaying particle for
each decay channel, separately.

Parameter set “P2”.
Analogous to the former set, the input values of the SM parameters are set as presented in
Eqs. (7.1) and (7.2), while the 2HDM-specific parameters are chosen as follows,
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For an analysis of the size of the electroweak corrections to selected decay channels, we
moreover perform a variation of some of the input parameters of this set:

Variation of mH 2 [130GeV, 550GeV], while all other parameters are given by the
fixed values in Eq. (7.5).

Variation of mA 2 [130GeV, 550GeV], while all other parameters are given by the fixed
values in Eq. (7.5).

These variations of the input parameters can lead to points in the parameter space of the real
2HDM that do not fulfill the aforementioned experimental constraints anymore. Since we do
not perform a dedicated phenomenological analysis in this work, however, we nevertheless
use the parameter sets generated by the variations in order to demonstrate the size of the
electroweak corrections implemented in 2HDECAY and to provide examples for analyses which
can be extended in future work. The renormalization scale µout at which the electroweak
partial decay widths are evaluated is again set to the mass of the decaying particle for each
decay channel, separately.

Parameter sets “P3”.
For another analysis of the size of the electroweak corrections of a selected Higgs decay channel
computed within di↵erent renormalization schemes, we use several additional parameter sets
which we collectively define as the“P3”set. The set includes 15 000 di↵erent parameter points
for a 2HDM type I with large varieties with respect to the values of the masses, mixing angles
and m

2
12, while the SM values are again set according to Eqs. (7.1) and (7.2). We evaluate

the electroweak partial decay widths again at the renormalization scale µout which is set to
the mass of the decaying particle of the respective decay channel. In contrast to the other
two aforementioned parameter sets, the values of the mixing angles in set “P3” are defined
within each considered renormalization scheme separately such that no conversion between
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partial decay width for

large range of input parameters

relative size of electroweak  
one-loop corrections:

In this plot   scheme refers to the renormalisation of the angles. 

Although for large widths this scheme is the most unstable, it is also true that very large 
corrections also appear in the other schemes.

MS

15 000 input parameter sets, that 
fulfil the most relevant theoretical 

and experimental constraints.  



Here again the corrections for 
point P2 vary just a few percent. 

The uncertainty is below 1% for 
the entire range of masses shown.

Comparison of schemes (N2HDM)
H3 → bb̄
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Figure 12.2.: Parameter set “P2”: The relative one-loop corrections ��EW as defined in
Eq. (7.7) for the decay channel H3 ! b b̄ as a function of mH3

(left) and for the decay channel
H

+
! t b̄ as a function of mH± (right) for four di↵erent renormalization schemes as specified

in the figure. For a definition of the abbreviations used to identify the schemes, cf. Table 6.1.

Z H3 and Z H1. Since the masses of the CP-odd and charged Higgs boson are close to each
other, the decays of A into W

±
H

⌥ and are not possible OS and hence, the BRs for these
o↵-shell decays are very small. For the charged Higgs boson H

±, the relative corrections to
the electroweak decay widths range from �17.2% to �4.0% and the corrections to the BRs
between �10.0% and 4.3% and are hence sizeable. The charged Higgs dominantly decays
into a top-bottom pair and W

±
H3. The numerical analysis for the parameter set “P1” shows

that the electroweak corrections to the electroweak partial decay widths and BRs of the
Higgs bosons of the N2HDM, in particular for the non-SM-like bosons, can become sizeable.
Consequently, the electroweak contributions provided in this thesis are relevant for a more
precise evaluation of the BRs and partial decay widths of the N2HDM Higgs bosons.

For an analysis of the sensitivity of the BRs on the N2HDM-specific parameters, we consider
the input parameter set “P2”, featuring a CP-even Higgs boson H1 which again is lighter
than the SM-like Higgs boson H2. The masses of the heaviest CP-even, CP-odd and charged
Higgs bosons are rather large. In order to analyze the behavior of the BRs with respect to
a change of the masses of the Higgs bosons, we perform a variation of mH± , mA and mH3

separately32. We show in Fig. 12.1 the BRs of the charged Higgs boson H
+ as a function of

mH± as well as the BRs of the CP-odd Higgs boson A as a function of mA on the left-hand
and right-hand sides of the figure, respectively. All BRs presented in the plots contain the
newly computed electroweak corrections to all OS decays that are not loop-induced, computed
within the p⇤-pinched scheme “po⇤”. The dashed vertical lines indicate the masses of the two
Higgs bosons corresponding to the original definition of the parameter set “P2” where no
variation is applied. As can be inferred from the plots, the BRs show a strong behavior on
the two varied masses. The charged Higgs boson dominantly decays into t b̄ over a large range
of the mass mH± and only for larger values above about 1TeV the BRs of the decays into
W

+
H3 and W

+
A exceed the ones of all other decay channels. The BRs of the decays into

W
+
H1 and W

+
H2 are similarly small over the whole range of chosen values of mH± . For the

BRs of the CP-odd Higgs boson A shown in the right-hand side of the figure, the threshold
of OS t t̄ production is clearly visible for mA & 2mt. Above the threshold, this decay mode
is the dominant one for the A boson over a large range of its mass until values of mA about

32We want to emphasize again that while the variation of the masses potentially leads to the definition of input
parameter sets that do not fulfill the theoretical and experimental constraints anymore, we only perform the
analysis of the BRs implemented in ewN2HDECAY to investigate the size of the electroweak corrections provided
in this thesis.
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Figure 12.3.: Parameter set “P2”: The relative di↵erence ��EW,x of the one-loop partial
decay widths evaluated in the renormalization scheme“x” in comparison to the ones computed
in the “po⇤” scheme, cf. Eq. (7.8), for the decay channel H3 ! b b̄ as a function of mH3

(left)
and for the decay channel H+

! t b̄ as a function of mH± (right).

1TeV are reached, where the BRs of the decays into Z H3 and W
±
H

⌥ exceed the BRs of all
other decay modes.

For the analysis of the size of the electroweak-corrected one-loop partial decay widths with
respect to the choice of the renormalization scheme for the scalar mixing angles, we again
consider the parameter set “P2” together with a variation of the masses of the H3 and H

±

Higgs bosons. To that end, we compute the relative one-loop corrections ��EW for the decay
of the heaviest CP-even Higgs boson H3 into b b̄ and for the decay of the charged Higgs boson

H
+ into t b̄ for the four di↵erent renormalization schemes “po/c⇤ ” and “pOSo/c” of the scalar

mixing angles. For each of the four renormalization schemes, both the tree-level and the one-
loop partial decay widths that enter �EW are calculated for the same renormalization scheme.
In case that this scheme di↵ers from the reference scheme “po⇤” in which the mixing angles are
defined in the parameter set “P2”, their values are converted from the reference scheme to the
input renormalization scheme in ewN2HDECAY. In Fig. 12.2, we show the corresponding relative
corrections ��EW for H3 ! b b̄ as a function of mH3

on the left-hand side and for H+
! t b̄

as a function of mH± on the right-hand side of the figure, respectively. The relative one-loop
corrections are sensitive to the change of the masses of the two Higgs bosons. Depending
on the renormalization scheme, they range from approximately �21% to �8% for the decay
H3 ! b b̄ and from �20% to 3% for the decay H

+
! t b̄ and hence, they are sizeable for the

two decay modes and the parameter set “P2” used for this analysis.

For a rough estimate of the remaining theoretical uncertainty of the partial decay widths due
to missing higher-order corrections, we define the “po⇤” as a reference scheme and compute the
di↵erence ��EW,x, cf. Eq. (7.8), between the one-loop partial decay widths computed within
any other scheme “x” with respect to the one computed in the reference scheme. As before,
the tree-level and one-loop electroweak decay widths are evaluated in the same renormaliza-
tion scheme for each considered scheme “x” and the mixing angles are converted from the
reference scheme to scheme “x” via the parameter conversion routine that is implemented in
ewN2HDECAY. Figure 12.3 shows the di↵erence ��EW,x, again for the decay channel H3 ! b b̄

as a function of mH3
and for H

+
! t b̄ as a function of mH± on the left-hand and right-

hand sides of the figure, respectively. As can be seen in the plots, the di↵erence between the
one-loop corrections computed within the di↵erent variations of the pinched schemes is only
below the percent level over the range of mH3

and mH± that is considered. This serves as
a rough indicator that the estimated remaining theoretical uncertainty for the two consid-

102 12. Numerical Analysis with ewN2HDECAY

mHi/A
mH± (II/flip.) mH± (I/lep.-sp.) m

2
12 vs ↵i t�

min 30GeV 580GeV 80GeV 0GeV2 1GeV -⇡/2 0.25

max 1500GeV 1500GeV 1500GeV 100 000GeV2 1500GeV ⇡/2 35

Table 12.1.: Allowed ranges of the input values of the real N2HDM for the parameter scan,
where i = 1, 2, 3. Each parameter is separately varied between its corresponding minimum
and maximum value.

Parameter set “P1”.
For the SM-like parameters, we use the input values presented in Eqs. (7.1) and (7.2), while
the N2HDM-specific parameters are set to

mH1
= 76.524GeV , mH2

= 125.09GeV , (12.1)

mH3
= 185.782GeV , mA = 304.936GeV ,

mH± = 298.729GeV , m
2
12(mhSM

) = 1712.82GeV2
,

vs(mhSM
) = 1454.24GeV , ↵1|po⇤

= 0.334 442 ,

↵2|po⇤
= 1.352 66GeV , ↵3|po⇤

= � 0.726 926 ,

t� |po⇤
= 2.385 25 , N2HDM type = I ,

where for m2
12 and vs, the arguments in brackets indicate that these input values are defined

at the scale µR = mhSM
. The subscripts denote that the four scalar mixing angles and their

CTs are given in the p⇤-pinched (odd) scheme, defined through Eqs. (C.36) to (C.39), which
is used as the reference renormalization scheme for this set. The renormalization scale µout

at which all electroweak partial decay widths are evaluated is set to the mass of the decaying
particle for each decay mode, separately.

Parameter set “P2”.
The SM-like parameters are again set to the values presented in Eqs. (7.1) and (7.2) while
the N2HDM-specific parameters are set to the values

mH1
= 91.123GeV , mH2

= 125.09GeV , (12.2)

mH3
= 696.389GeV , mA = 766.781GeV ,

mH± = 672.106GeV , m
2
12(mhSM

) = 208 360.0GeV2
,

vs(mhSM
) = 2196.48GeV , ↵1|po⇤

= 0.697 912 ,

↵2|po⇤
= � 1.459 21GeV , ↵3|po⇤

= 1.516 15 ,

t� |po⇤
= 0.950 614 , N2HDM type = II ,

where the MS parameters are again defined at the scale µR = mhSM
and the four scalar mixing

angles are given in the p⇤-pinched (odd) scheme. Moreover, we perform a variation of some
of the N2HDM-specific input parameters in order to analyze the sensitivity of the BRs and
partial decay widths on these parameters:

Variation of mH3
2 [500GeV, 800GeV], while all other parameters are given by the

fixed values in Eq. (12.2).

Variation of mH± 2 [580GeV, 1200GeV], while all other parameters are given by the
fixed values in Eq. (12.2).

Variation of mA 2 [300GeV, 1100GeV], while all other parameters are given by the
fixed values in Eq. (12.2).



Conclusions

A renormalisation scheme for some of the most commonly used versions of the 
2HDM and for the N2HDM was proposed. 

We have extended the scheme proposed by Fleischer and Jegerlehner to those 
models. 

New parameters: rotation angles and a mass term (soft breaking) appear. 

Rotation angles are renormalised by an identification with the off-shell wave 
function renormalisation constants. As these are gauge dependent a procedure to 
remove the gauge dependencies was applied. 

The criteria of gauge independence was met and the one for moderate corrections 
was achieved in most cases. 

Good agreement with other proposed schemes. 



Thank you



Comparison of schemes (2HDM)

proc 1: δβ viaA→τ+τ− and subsequently δα via H→τ+τ-

p* schemes as previously defined
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Figure 7.4.: Parameter Set “P3”: The relative size of the electroweak corrections ��EW

as defined in Eq. (7.7) between the one-loop and tree-level electroweak partial decay width
of the decay channel H+

! W
+
h as a function of the tree-level electroweak decay width

�LO,EW
H+W+h

for two di↵erent scales on the ��EW axis and for di↵erent renormalization schemes
used for the computation of the one-loop widths (left and right).

uncertainty on the one-loop electroweak partial decay widths, estimated from a change of the
renormalization schemes, is of the order of a few percent for the decay channels and points
in parameter space considered.

As briefly mentioned in Sec. 5.3, some renormalization schemes for the scalar mixing angles
considered in this thesis can lead to numerical instabilities, i.e. their application can lead
to large one-loop contributions to the electroweak partial decay widths. On the one hand,
this numerical instability of the one-loop results can appear in certain regions of parameter
space of the real 2HDM if e.g. the mixing angles ↵ and � are set to such values that cer-
tain combinations of these two mixing angles become very small. Since these combinations
typically appear in the denominators of either the genuine one-loop vertex corrections or of
certain CTs of the partial decay widths, such a choice of ↵ and � leads to an enhancement
of uncanceled one-loop contributions. On the other hand, an unsuitable choice of mixing
angle CTs can lead to an artificial increase of the one-loop partial decay widths if the mixing
angle CTs themselves become very small or large, leading to uncanceled contributions to the
partial decay width. While the former e↵ect of numerical instability is restricted to certain
corners of parameter space, the latter appears more generally for a large variety of di↵erent
parameter sets.

In order to disentangle these two e↵ects for a categorization of a renormalization scheme with
respect to its numerical stability, we perform a numerical analysis on the relative size of the
electroweak one-loop corrections, again quantified through ��EW as defined in Eq. (7.7), for
15 000 di↵erent input parameter sets randomly distributed in the parameter space of the real
2HDM denoted by the set “P3”, cf. Sec. 7.1. The electroweak tree-level and one-loop partial
decay widths are again calculated within the same input renormalization scheme. In contrast
to the analyses performed before, we consider the reference scheme of the mixing angles to
be equal to the input renormalization scheme for each parameter point in the set “P3” and
for each considered renormalization scheme, separately. Consequently, no conversion of the
mixing angles between the di↵erent schemes is required since we do not compare the results
computed within the di↵erent renormalization schemes directly with each other but instead
analyze each renormalization scheme with respect to its numerical stability separately. In
Fig. 7.4, we show the relative size ��EW of the electroweak one-loop corrections as a function
of the tree-level partial decay width �LO,EW

H+W+h
for the decay of a charged Higgs boson H

+ into

partial decay width for

large range of input parameters

relative size of electroweak  
one-loop corrections:

15 000 input parameter sets, that 
fulfil the most relevant theoretical 

and experimental constraints.  

proc 2: δβ viaA→τ+τ− and subsequently δα via h→τ+τ-

For the full scan more stable seems to be the p* scheme  

H+ → W+h




