MSSM Higgs Boson Production via Gluon Fusion:

The Large Gluino Mass

Heidi Rzehak in coll. with M. Mühlleitner and M. Spira KIT-NEP '19, 7 October 2019

- Higgs boson production via gluon fusion
- Why heavy gluinos?
- Treatment of heavy gluinos

Standard Model Higgs Boson Production

MSSM Higgs Boson Production via Gluon Fusion: The Large Gluino Mass

MSSM Higgs Production via Gluon Fusion

- Higgs production via gluon fusion with subsequent decay
 - ▷ into photons: $gg \rightarrow h^0 \rightarrow \gamma\gamma$ Possible discovery channel for Higgs boson masses $M_{h^0} \sim 120 \text{ GeV}$ [CMS 06, ATLAS 09]
 - into photons or other particles:
 Useful for coupling measurements

 \Rightarrow Need to know the cross section of $gg \rightarrow h^0$

Coupling of gluons, g, to the Higgs bosons is mediated via quarks and their superpartners squarks.
 (here: h⁰, lightest MSSM Higgs boson)

MSSM Higgs Production via Gluon Fusion

- Higgs production via gluon fusion with subsequent decay
 - ▷ into photons: $gg \rightarrow h^0 \rightarrow \gamma\gamma$ Possible discovery channel for Higgs boson masses $M_{h^0} \sim 120$ 125 GeV [CMS 96 12, ATLAS 99 12]
 - into photons or other particles:
 Useful for coupling measurements

 \Rightarrow Need to know the cross section of $gg \rightarrow h^0$

Coupling of gluons, g, to the Higgs bosons is mediated via quarks and their superpartners squarks.
 (here: h⁰, lightest MSSM Higgs boson)

Pure QCD Corrections

- Pure QCD (only gluons) corrections to quark and squark
 - loops with full mass dependence
 - \Rightarrow increase of the cross section of 100%.

[Spira, Djouadi, Graudenz, Zerwas 92, 95; Graudenz, Spira, Zerwas 93; Anastasiou, Beerli, Bucherer, Daleo, Kunszt 07; Aglietti, Bonciani, Degrassi, Vicini 07; Bonciani, Degrassi, Vicini 07; Mühlleitner, Spira 08]

 Pure QCD corrections can be approximated by very heavy top quarks and squarks with 20 – 30 % accuracy for small tan β (large tan β: bottom quark and squark contributions are important).

 $\tan \beta = \text{ratio of Higgs vacuum expectation values}$

[Djouadi, Spira, Zerwas 91; Dawson 91; Kauffman, Schaffer 94; Dawson, Kauffman 94; Dawson, Djouadi, Spira 96; Krämer, Laenen, Spira 98]

SUSY QCD Contributions

 (SUSY) QCD (gluons and gluinos) contributions in the heavy top quark/squark and gluino limit: Next term in the mass expansion indicates:

Approximation: Good for the lightest MSSM Higgs boson and small and moderate tan β values.

[Harlander, Steinhauser 03,03, 04, Harlander, Hoffmann 06, Degrassi, Slavich 08]

- (SUSY) QCD contribution including the mass dependence of all particles (bottom quark/squark contributions included):
 - The heavy mass limit approximation:
 Good for small and moderate tan β.
 - Contributions from squark quartic couplings and gluinos can be sizeable.

[Anastasiou, Beerli, Daleo 08]

Why consider a heavy gluino? Conceptual problem

On the one hand: Keeping supersymmetric relations between parameters intact \Rightarrow gluinos do not decouple (For heavy gluinos: Result depends logarithmically on the gluino mass $M_{\tilde{x}}$.)

On the other hand: Decoupling theorem: [Appelquist, Carrazzone 75] Heavy fields decouple at low momenta (except for renormalization effects).

Why consider a heavy gluino? Viable scenarios

Simplified scenario: no mixing, degenerate squark masses:

 m_Q = quark mass; $v = (v_1^2 + v_2^2)^{\frac{1}{2}} \approx 246$ GeV, v_i = Higgs vacuum expectation value; g = norm. factor of the Higgs coupling to a quark pair with respect to the SM

In higher oders (1-loop):

MSSM Higgs Boson Production via Gluon Fusion: The Large Gluino Mass

Scales above $M_{ ilde{g}}:\mu_R{>}M_{ ilde{g}}$	Scales below $M_{\tilde{g}}$: $\mu_R < M_{\tilde{g}}$
 Renormalization scheme: MS (only divergent parts in counterterms) 	• Renormalization scheme: momentum subtraction (MO) (for decoupling of the gluino)
• RGE: (Renormalization group equations) same for $\lambda_{\tilde{Q}}$ and $2\frac{v}{g}\lambda_{Q}^{2}$	• RGE: differ for $\lambda_{\tilde{Q}}$ and $2\frac{v}{g}\lambda_{Q}^{2}$
• Symmetry relation between λ_Q and $\lambda_{\tilde{Q}}$ intact	• Symmetry relation between λ_Q and $\lambda_{\tilde{Q}}$ broken

Matching at scale $M_{\tilde{g}}$: $\mu_R = M_{\tilde{g}}$:

• Threshold contributions

Taking into account the mismatch of the couplings λ_Q and $\lambda_{\tilde{Q}}$ for $\mu_R < M_{\tilde{g}}$:

 \Rightarrow Gluino decouples from the theory [Mühlleitner, HR, Spira 08]

Scale dependence of $\lambda_{\tilde{Q}}$ and $2\frac{v}{g}\lambda_Q^2$:

Further scales: Quark and squark masses

Relation between m_Q and λ_Q

At scale m_Q : Clearly, III: $\mu_R < M_{\tilde{g}}$

 \Rightarrow Momentum-subtracted (MO) scheme at scale $\mu_R = m_Q$:

$$g_Q^{\phi} \frac{m_Q}{v} = \lambda_{Q,MO}(m_Q) \left(1 + \frac{4}{3} \frac{\alpha_s(m_Q)}{\pi} \right)$$
 [Gray, Broadhurst, Grafe, Schilcher, 90]

 $g^{\phi}_{Q} = {\rm mixing} ~{\rm angle} ~{\rm factor} ~{\rm depending} ~{\rm on} ~{\rm mixing} ~{\rm angles} ~\alpha$ and β

 \Rightarrow Relation between m_Q and $\lambda_{\tilde{Q}}$:

At
$$m_Q: 2g_Q^{\phi} \frac{m_Q^2}{v} = \lambda_{\tilde{Q},MO}(m_Q) \left[1 + \frac{4}{3} \frac{\alpha_s(m_Q)}{\pi} \left(\log \frac{M_{\tilde{g}}^2}{m_Q^2} + \frac{1}{2} \right) \right]$$

At $m_{\tilde{Q}}: 2g_Q^{\phi} \frac{m_Q^2}{v} = \lambda_{\tilde{Q},MO}(m_{\tilde{Q}}) \left[1 + \frac{4}{3} \frac{\alpha_s(m_Q)}{\pi} \left(\log \frac{M_{\tilde{g}}^2}{m_{\tilde{Q}}^2} + \frac{3}{2} \log \frac{m_{\tilde{Q}}^2}{m_Q^2} + \frac{1}{2} \right) \right]$

Back to gluon fusion

Effective Lagrangian: $\mathcal{L}_{\text{eff}} = \frac{\alpha_s}{12\pi} G^{a,\mu\nu} G^a_{\mu\nu} \frac{H}{v} \left[\dots + \sum_{\tilde{Q}} \frac{v \lambda_{\tilde{Q},MO}}{4m_{\tilde{Q}}} \left(1 + C_{\text{SQCD}} \frac{\alpha_s}{\pi} \right) \dots \right]$

No decoupling (equal squark masses):

$$C_{\text{SQCD}}^{\text{HS}} = rac{11}{2} - rac{4}{3} \log rac{M_{ ilde{g}}^2}{m_{ ilde{Q}}^2} - 2 \log rac{m_{ ilde{Q}}^2}{m_{ ilde{Q}}^2}$$

Include decoupling contributions:

$$\Delta C_{\text{SQCD}} = \frac{4}{3} \log \frac{M_{\tilde{g}}^2}{m_{\tilde{Q}}^2} + 2 \log \frac{m_{\tilde{Q}}^2}{m_Q^2} + \frac{2}{3}$$

$$\Rightarrow C_{SQCD}^{HS} + \Delta C_{SQCD} = \frac{37}{6} = \text{finite}$$

MSSM Higgs Boson Production via Gluon Fusion: The Large Gluino Mass

Decoupling of gluinos and first-generations squarks

[Aebischer, Crivellin, Greub, Yamada, 17], see also [Krämer, Summ, Voigt 19]

Similar procedure for full MSSM (including mixing)

 \rightarrow effective field theory for the stop sector

Below the decoupling scale of 5 TeV:

Yukawa couplings evolve differently
(Higgs-Quark-Quark, Higgsino-Quark-Squark)

 \Rightarrow Supersymmetry relations are broken.

MSSM Higgs Boson Production via Gluon Fusion: The Large Gluino Mass

- Gluon fusion:
 - \triangleright A loop-induced Higgs boson production mechanism
 - $\triangleright~$ Large cross section
- For scales below the gluino mass:
 - Symmetry relation between Higgs couplings to quarks and to squarks: Broken
 - ▷ Gluinos decouple
- Important: Respect large different scales in the theory

MSSM Higgs Boson Production via Gluon Fusion: The Large Gluino Mass Heidi Rzehak

Pure SM QCD Corrections: Status: \sim 2010

• NNLO QCD corrections in the heavy top quark limit (no squarks included)

 \Rightarrow increase of the cross section by 20 – 30 %.

[Harlander, Kilgore 02, 02; Anastasiou, Melnikov 02, 03; Ravindran, Smith, van Neerven 03] g

- Finite top quark mass effects at NNLO (no squarks)
 - \Rightarrow below the scale uncertainty.

[Harlander, Ozeren 09, 09; Pak, Rogal, Steinhauser 09, 09; Harlander, Mantler, Marzani, Ozeren 09]

- Estimates of N³LO corrections (no squarks)
 - \Rightarrow improved convergence

[Catani, de Florian, Grazzini, Nason 07; Moch, Vogt 05; Ravindran 06, 06]

- Soft gluon resummation: $\sim 10\%$ effects

[Catani, de Florian, Grazzini, Nason 07]

• Electroweak contributions: $\sim 5\%$ effects

[Degrassi, Maltoni 04, Aglietti, Bonciani, Degrassi, Vicini 06, Actis, Passarino, Sturm, Uccirati 08, Anastasiou, Boughezal, Petriello 09]

MSSM Higgs Boson Production via Gluon Fusion: The Large Gluino Mass

g Leeee

 h^0