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Setting the stage.
The MSSM Higgs sector at tree-level.

The MSSM Higgs sector contains two doublets Hd = (φ0∗
d ,−φ−d ) and Hu =

(φ+
u , φ

0
u), which enter the tree-level potential as follows

V LO
MSSM =(m2

Hd + µ2)|Hd|2 + (m2
Hu + µ2)|Hu|2 −Bµεij(Hi

dH
j
u + h.c.)

+
g2 + g′2

8
(|Hd|2 − |Hu|2)2 +

g2

2
|H∗dHu|2 .

After EWSB the neutral components

φ0
d =

1√
2

(vd + σd + iξd) and φ0
u =

1√
2

(vu + σu + iξu)

acquire VEVs and in the CP-odd sector we are left with a pseudoscalar with
mass MA

2 = 2Bµ/ sin(2β) with tβ := tanβ = vu/vd. The mass matrix of the
CP-even sector turns into

M2
tree =

(
M2

dd M2
du

M2
du M2

uu

)
=

(
M2
As

2
β +M2

Zc
2
β −(M2

A +M2
Z)sβcβ

−(M2
A +M2

Z)sβcβ M2
Ac

2
β +M2

Zs
2
β

)
.

Diagonalization yields tan(2α) = tan(2β)
M2
A+M2

Z

M2
A
−M2

Z
and M2

h ≤M2
Z cos2(2β).

→ Higher-order corrections are needed.
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Setting the stage.
The hMSSM.

Higher-order corrections lift the light CP-even Higgs mass to Mh = 125 GeV:

M2
loop =

(
M2
As

2
β +M2

Zc
2
β −(M2

A +M2
Z)sβcβ

−(M2
A +M2

Z)sβcβ M2
Ac

2
β +M2

Zs
2
β

)
+

(
∆M2

dd ∆M2
du

∆M2
du ∆M2

uu

)
.

Idea of the hMSSM:
[Djouadi Maiani Moreau Polosa Quevillon Riquer 1307.5205, 1304.1787, 1305.2172, 1502.05653]

If the dominant correction is ∆M2
uu and all other corrections are small, one

can invert the relation and obtain ∆M2
uu as a function of the eigenvalue Mh:

ε := ∆M2
uu =

M2
h(M2

A +M2
Z −M2

h)−M2
AM

2
Zc

2
2β

M2
Zc

2
β +M2

As
2
β −M2

h

.

Then all other masses and mixing angles are fixed to

M2
H = M2

A +M2
Z −M2

h + ε, MH± = M2
A +M2

W ,

tan(2α) = tan(2β)
M2
A +M2

Z

M2
A −M2

Z + ε/ cos 2β
.

Aim 1 of this talk: Understand the underlying assumptions of this approach.
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Setting the stage.
The hMSSM.

Currently used Higgs self-couplings in the hMSSM approach:

λhhh = 3
M2
Z

v
c2αsα+β +

3c3α
vsβ

ε, λHhh =
M2
Z

v
(2s2αsα+β − c2αcα+β) +

3sαc
2
α

vsβ
ε

Though:
[LHCHXSWG-2015-002] revealed differences in the
decay H → hh between a full MSSM calculation
and the hMSSM approach.
However, this comparison is slightly misleading:
7 “low-tb-high” corresponds to a calculation with
FeynHiggs at full one-loop including the
resummation of logs.
7 hMSSM+HDecay instead is a tree-level
calculation employing the above
loop-corrected coupling.

Aim 2 of this talk:
Get a better understanding
of the Higgs-self couplings in the hMSSM.
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Low-energy effective 2HDM.
Introduction.

Go back to square one!
The MSSM Higgs sector and thus also the hMSSM is nothing else than an
effective low-energy 2HDM Higgs sector, i.e. we have two Higgs doublets H1

and H2, that enter the tree-level potential as follows

V LO
2HDM = m2

1|H1|2 +m2
2|H2|2 −m2

3(H†1H2 + h.c.)

+
λ1

2
|H1|4 +

λ2

2
|H2|4 + λ3|H1|2|H2|2 + λ4|H†1H2|2 .

Supersymmetry fixes all couplings

λ1 = λ2 =
g2 + g′2

4
, λ3 =

g2 − g′2

4
, λ4 = −g

2

4

and we identify m2
3 = Bµ, which relates to MA. Corrections to this low-energy

2HDM from heavy (s)particles, that are integrated out, can be calculated in the
effective potential approach (EPA), where the Lagrangian takes the form
[Beneke Ruiz-Femenia Spinrath 0810.3768]

Leff
2HDM =

∑
i,j∈{1,2}

Zeff
ij (DµHi)

†(DµHj)− V eff
2HDM .
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Low-energy effective 2HDM.
Mass corrections.

Correction to the MSSM Higgs masses in the EPA (Diagrammatic with p2 = 0):
O(αt): [Okada Yamaguchi Yanagida ’91, Haber Hempfling ’91, Ellis Ridolfi Zwirner ’91]

O(αb), EW: [Brignole ’92, Chankowski Pokorski Rosiek ’93, Dabelstein ’94, Pierce et al. ’96]

Correction to the MSSM Higgs self-couplings in the EPA:
O(αt, αb): [Barger et al. ’92, Hollik Penaranda ’01, Dobado et al. ’02]

For our purpose: [SL Mühlleitner Spira Stadelmaier 1810.10979]

We consider O(αt) corrections in the gaugeless limit:

V eff
2HDM = V LO

2HDM + V NLO(t) + V NLO(t̃) +O(α2
t )

The individual contributions from the top quark and stop sector (using field-
dependent masses) are given by (Cε = Γ(1 + ε)(4π)ε):

V NLO(t) =
3

(4π)2
Cε

{
m4
t

[
1

ε
+

3

2
− log

m2
t

Q2

]}
V NLO(t̃) = − 3

(4π)2
1

2
Cε

{
m4
t̃1

[
1

ε
+

3

2
− log

m2
t̃1

Q2

]
+m4

t̃2

[
1

ε
+

3

2
− log

m2
t̃2

Q2

]}
.
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Low-energy effective 2HDM.
Mass corrections.

For the Higgs masses this implies ∆M2
ij = ∆M2

ij(t) + ∆M2
ij(t̃).

The (potentially) dominant corrections toM2
uu are

∆M2
uu(t) =

12

(4π)2v2s2β
m

4
t

[
2∆ε + 2 log

(
Q2

m2
t

)]
,

∆M2
uu(t̃) =

12

(4π)2v2s2β
m

4
t

−2∆ε + A
2
tC

2
t gt + 2AtCt log

m2
t̃1

m2
t̃2

+ 2 log

(mt̃1mt̃2
Q2

)
using

Ct =
Xt

m2
t̃1
−m2

t̃2

, gt = 2−
m2
t̃1

+m2
t̃2

m2
t̃1
−m2

t̃2

log
m2
t̃1

m2
t̃2

, Xt = At − µ/tβ : stop mixing .

Summing the two contributions yields a UV finite correction

∆M2
uu =

12

(4π)2v2s2β
m4
t

[
A2
tC

2
t gt + 2AtCt log

(
m2
t̃1

m2
t̃2

)
+ 2 log

(
mt̃1

mt̃2

m2
t

)]
.

For MS = Mt̃L
= Mt̃R

this can be expanded in large MS

∆M2
uu =

3GF√
2π2s2β

m4
t

[
log

(
M2
S

m2
t

)
+
XtAt
M2
S

(
1− XtAt

12M2
S

)
+ . . .

]
.
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Low-energy effective 2HDM.
Mass corrections.

The other two elements receive corrections from the stop sector, which yield

∆M2
dd(t̃) =

12

(4π)2v2s2β
m4
tC

2
t µ

2gt ,

∆M2
du(t̃) = − 12

(4π)2v2s2β
m4
tCtµ

[
AtCtgt + log

(
m2
t̃1

m2
t̃2

)]
.

For MS = Mt̃L
= Mt̃R

we can rotate into mass eigenstates and get

∆M2
h =

3GF√
2π2

m4
t

[
log

(
M2
S

m2
t

)
+
X2
t

M2
S

(
1− X2

t

12M2
S

)
+ . . .

]
.

Expression from the previous slide:

∆M2
uu =

3GF√
2π2s2β

m4
t

[
log

(
M2
S

m2
t

)
+
XtAt
M2
S

(
1− XtAt

12M2
S

)
+ . . .

]
.

Remember that Xt = At − µ/tβ .
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Low-energy effective 2HDM.
Mass corrections.

We are now able to formulate the assumptions of the hMSSM approach:
For vanishing µ/MS the elements ∆M2

dd(t̃) and ∆M2
du(t̃) vanish.

It then yields Xt/MS ≈ At/MS and thus

ε := ∆M2
uu = ∆M2

h/s
2
β .

We can thus formulate the assumptions
of the hMSSM approach:
X Low values of tanβ as
one neglects (s)bottom contributions!
X Low value of µ/MS , such
that ∆M2

dd and ∆M2
du are subdominant.

↔ Electroweakinos that are lighter
than squark spectrum!

 [GeV]Am

200 300 400 500 600 700
β

ta
n 

1

2

3
4
5

10

20

30
40

ττ→H/A
-1 = 13 TeV, 36.1 fbs

JHEP 01 (2018) 055

ντ →+H
-1 = 13 TeV, 36.1 fbs

JHEP 09 (2018) 139

 tb→+H
-1 = 13 TeV, 36.1 fbs

arXiv:1808.03599 [hep-ex]

νν 4l/ll→ ZZ→H
-1 = 13 TeV, 36.1 fbs

Eur. Phys. J. C (2018) 78: 293

 Zh→ A→gg
-1 = 13 TeV, 36.1 fbs

JHEP 03 (2018) 174

νlν l→ WW→H
-1 = 13 TeV, 36.1 fbs

Eur. Phys. J. C 78 (2018) 24

 4b,→ hh→H
,ττ/γγ bb →         

γγ WW→         
-1 = 8 TeV, 20.3 fbs

Phys. Rev. D92, 092004 (2015)

γγ bb → hh →H
-1 = 13 TeV, 3.2 fbs

ATLAS-CONF-2016-004

]dκ, uκ, Vκh couplings [
-1 = 13 TeV, 36.1 - 79.8 fbs

ATLAS-CONF-2018-031

ATLAS
Preliminary
hMSSM, 95% CL limits

October 2018

Observed
Expected

Stefan Liebler 11 / 18



The improved hMSSM.
.

Outline

1 Setting the stage

2 Low-energy effective 2HDM

3 The improved hMSSM

4 Conclusions

Stefan Liebler 12 / 18



The improved hMSSM.
Revisiting the Higgs self-couplings.

We calculated the corrections to the Higgs self-couplings in the EPA approach:

∆λuuu(t) =
72

(4π)2v3s3β
m4
t

[
∆ε−

2

3
+ log

(
Q2

m2
t

)]
,

∆λuuu(t̃) =
72

(4π)2v3s3β
m4
t

[
−∆ε + log

(
mt̃1

mt̃2

Q2

)]
+ . . .

Adding all other combinations ∆λddd, ∆λddu, ∆λduu, rotating into mass eigen-
states and expanding in inverse powers of MS = Mt̃L

= Mt̃R
yields

∆λHhh =
72sαc

2
α

(4π)2v3s3β
m4
t

[
log

(
M2
S

m2
t

)
+
A2
t

M2
S

(
1− A2

t

12M2
S

)
−2

3
+ . . .

]
.

We can identify ε defined in the mass corrections and thus rewrite ∆λHhh as

∆λHhh =
3sαc

2
α

vsβ

[
ε+

24

(4π)2v2s2β
m4
t

(
−2

3
+

2m2
t

3M2
S

− m2
tA

2
t

M4
S

+
m2
tA

4
t

3M6
S

− m2
tA

6
t

30M8
S

)]
.
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The improved hMSSM.
Revisiting the Higgs self-couplings.

Definition of the “improved hMSSM” [SL Mühlleitner Spira Stadelmaier 1810.10979]:
For the Higgs self-couplings use the modified correction

ε = ε− 24

(4π)2v2s2β
m4
t

2

3
,

which includes a missing contribution from the top-quark! Obtain ε according
to the hMSSM approach from Mh, MA and tanβ, define ε, that enters all
Higgs self-couplings, e.g.

λhhh = 3
M2
Z

v
c2αsα+β +

3c3α
vsβ

ε , λHhh =
M2
Z

v
(2s2αsα+β − c2αcα+β) +

3sαc
2
α

vsβ
ε .

We calculate Γ(H → hh) augmented by momentum-dependent corrections:

H

h

h

λHhh H

h

h

t H

h

h

t̃ H

h

h

t̃ H

h

h

t̃

H

h

h

t̃
H

h

h

H

h

h

H

h

h

H

h

h

δλ

= t
t̃

t̃
−δZeff
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The improved hMSSM.
Numerical example.

Numerical results for one scenario:

MS = 1.5 TeV , µ = 0 GeV , Xt =

{
2950 GeV tanβ ≤ 4

(2950− 400
3

(tanβ − 4)) GeV tanβ > 4
.

For µ = 0 GeV the hMSSM approach reproduces exactly mH and α.
We show the light Higgs mass mh and λεHhh and λεHhh in comparison to the
exact effective value of λeff

Hhh(t = 1, t̃ = 1) including top and stop contributions
(at zero momentum) at one-loop:

ta
n
β

MA [GeV]

Mh [GeV]
µ = 0GeV

125

122

110

100
90

ta
n
β

MA [GeV]

(λεHhh − λeff
Hhh(1, 1))/λeff

Hhh(1, 1) [%]
µ = 0 GeV

3.8

4

5

1015

ta
n
β

MA [GeV]

(λεHhh − λeff
Hhh(1, 1))/λeff

Hhh(1, 1) [%]
µ = 0 GeV

0.013

0.015

0.015

0.02
0.03
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The improved hMSSM.
Numerical example.

Our numerical results for the partial width Γ(H → hh):
see also [Brignole Zwirner ’92, Williams Weiglein ’07, Chalons Djouadi Quevillon ’17]

ta
n
β

MA [GeV]

ΓNLO
eff (1, 1) [GeV]

µ = 0 GeV

0.025

0.05

0.1

0.15

0.2

0.25
ta

n
β

MA [GeV]

(ΓNLO
eff (1, 1) − ΓLO

eff )/ΓLO
eff [%]

µ = 0 GeV

5

10

15

20

30

ta
n
β

MA [GeV]

(ΓNLO
ε (1, 1) − ΓNLO

eff (1, 1))/ΓNLO
eff (1, 1) [%]
µ = 0 GeV

7.5 7

10

20

ta
n
β

MA [GeV]

(ΓNLO
ε (1, 0) − ΓNLO

eff (1, 1))/ΓNLO
eff (1, 1) [%]
µ = 0 GeV

−0.04−0.02

0

0.02

0.04

0.06

p
2 -dependent corrections

Comments:
3 Using the “improved hMSSM”, i.e. ε in λHhh,
reproduces Γ(H → hh) with exact top and
stop corrections accurately, for µ = 0 GeV.
3 p2-dependent one-loop corrections are of
relevance! For the hMSSM p2-dependent cor-
rections from the top-quark are sufficient!
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Conclusions.
.

The hMSSM is a nice approach to the MSSM Higgs sector that uses Mh as
input. We discussed the hMSSM as low-energy effective 2HDM, where both
top and stops are integrated out:

X Remember the assumptions of the
hMSSM, i.e. low tanβ and low µ/MS .
X Use corrected ε for the
Higgs self-couplings.
X Augment Γ(H → hh) with
momentum-dependent corrections
from top-quark.

To be done:
7 Understand differences for µ > 0 GeV.
7 Identify the scheme of mt in ε.
7 Go beyond the gaugeless limit.

Don’t forget that the hMSSM is only a good approximation.
“Proper” MSSM scenarios offer other aspects, e.g. light electroweakinos.
[Bahl SL Stefaniak 1901.05933]

200 300 400 1000 2000
 [GeV]Am

1

2

3

4

5
6
7
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20

30

40

50
60β

ta
n

 (13 TeV)-135.9 fb

130

CMS Preliminary

Observed exclusion 95% CL

Expected exclusion 95% CL

EPJC 79 (2019) 421
h(125)

CMS-PAS-HIG-18-010
µµ →A/H/h 

JHEP 1808 (2018) 113
 bb→A/H 

JHEP 1809 (2018) 007
ττ →A/H/h 

CMS-PAS-HIG-17-033
 qq)ν and lν lν WW (l→H 

PLB 778 (2018) 101
)ττ hh (bb→H 

CMS-PAS-HIG-17-027
 tt→H 

CMS-PAS-HIG-18-023
)ττ Zh (ll→A 

hMSSM
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.
.

Details: ANLO(t, t̃) = Avirt(t, t̃) +Aext(t, t̃) +Aext,eff(t, t̃) +Aδλ(t, t̃) ,

δZH = Σ′HH(M2
H) , δZh = Σ′hh(M2

h) , δZHh(p2) =
ΣHh(p2)

M2
H −M2

h

δZeff
H = Σ′HH(0) , δZeff

h = Σ′hh(0) , δZeff
Hh(p2) =

p2Σ′Hh(0)

M2
H −M2

h

Aext(t, t̃) = λHhh( 1
2
δZH + δZh) + λhhhδZHh(M2

H)− 2λHHhδZHh(M2
h)

Aext,eff(t, t̃) = λHhh(− 1
2
δZeff

H − δZeff
h )− λhhhδZeff

Hh(M2
H) + 2λHHhδZ

eff
Hh(M2

h)

δα = −s4α
4

(
∆M2

du

M2
du

− ∆M2
uu −∆M2

dd

M2
uu −M2

dd

)
Aδλ(t, t̃) =

∂λHhh
∂α

δα+Aeff = λhhhδα− 2λHHhδα+Aeff

Aeff(t, t̃) = −∆λHhh(t, t̃) = − Avirt(t, t̃)
∣∣∣
q2i=0
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