

$\mathcal{PARAMETRICALLY} \ \mathcal{ENHANCED} \\ \mathcal{CORRECTIONS} \ \mathcal{IN} \ \mathcal{SUPERSYMMETRY} : \Delta_b$

Michael Spira (PSI)

- I Introduction
- II Δ_b Corrections
- III Higgs Production
- IV Conclusions

(i) <u>Standard Model</u>

• Discovery: LHC [Tevatron]

(ii) <u>MSSM</u>

- 2 Higgs doubletts $\xrightarrow{\text{ESB}}$ 5 Higgs bosons: h, H, A, H^{\pm}
- LO: 2 input parameters: M_A , $tg\beta = \frac{v_2}{v_1}$ • radiative corrections $\propto m_t^4 \log \frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2} \rightarrow M_h \lesssim 135 \text{ GeV}$ Haber Carena,... $M_h \lesssim 135 \text{ GeV}$ Slavich,...
- Yukawa couplings: $tg\beta\uparrow \Rightarrow g_u^{\phi}\downarrow g_d^{\phi}\uparrow g_V^{\phi}\downarrow$
- LHC: $gg \rightarrow \phi$ dominant for $tg\beta \lesssim 10$ $gg \rightarrow \phi b\overline{b}$ dominant for $tg\beta \gtrsim 10$

$$gg \to b\bar{b}\phi^0, \ gg \to \phi^0 \qquad \phi^0 \to \tau^+ \tau$$

ATLAS: similar results

 \bullet large SUSY–QCD corrections to $\phi^0 \to b \overline{b}$

h

II $\Delta_b CORRECTIONS$ SUSY-QCD Corrections to $b\bar{b}\phi^0$ $[\Delta \lesssim 1\%]$ $\mathcal{L}_{eff} = -\lambda_b \overline{b_R} \left| \phi_1^0 + \frac{\Delta_b}{\tan\beta} \phi_2^{0*} \right| b_L + h.c. \quad \text{valid to all orders in } \Delta_b$ $= -m_b \overline{b} \left| 1 + i\gamma_5 \frac{G^{\mathsf{U}}}{v} \right| b - \frac{m_b/v}{1 + \Delta_b} \overline{b} \left| g_b^h \left(1 - \frac{\Delta_b}{\tan \alpha \tan \beta} \right) h \right|$ $+g_b^H\left(1+\Delta_b\frac{\mathrm{tg}\alpha}{\mathrm{tg}\beta}\right)H-g_b^A\left(1-\frac{\Delta_b}{\mathrm{tg}^2\beta}\right)i\gamma_5Ab$ $\Delta_b = \Delta_b^{QCD(1)} + \Delta_b^{elw(1)}$ $\Delta_b^{QCD(1)} = \frac{2}{3} \frac{\alpha_s(\mu_R)}{\pi} M_{\tilde{g}} \mu \, \mathrm{tg}\beta \, I(m_{\tilde{h}_1}^2, m_{\tilde{h}_2}^2, M_{\tilde{a}}^2)$ $\Delta_{b}^{elw(1)} = \frac{\lambda_{t}^{2}(\mu_{R})}{(4\pi)^{2}} \mu A_{t} \operatorname{tg} \beta I(m_{\tilde{t}_{1}}^{2}, m_{\tilde{t}_{2}}^{2}, \mu^{2})$ $I(a, b, c) = -\frac{ab \log \frac{a}{b} + bc \log \frac{b}{c} + ca \log \frac{c}{a}}{(a - b)(b - c)(c - a)}$ Carena, Garcia, Nierste, Wagner \Rightarrow resummed Yukawa couplings \tilde{g}_{h}^{Φ} Guasch, Häfliger, S.

small α_{eff} scenario [modified]

$$\begin{array}{rcl} {\rm tg}\beta &=& 30 \\ M_{\tilde{Q}} &=& 800 \ {\rm GeV} \\ M_{\tilde{g}} &=& 1000 \ {\rm GeV} & \longleftarrow \\ M_2 &=& 500 \ {\rm GeV} \\ A_b \!=\! A_t &=& -1.133 \ {\rm TeV} \\ \mu &=& 2 \ {\rm TeV} \end{array}$$

$$\begin{array}{rcl} m_{\tilde{t}_1} &=& 679 \ {\rm GeV} & m_{\tilde{t}_2} = 935 \ {\rm GeV} \\ m_{\tilde{b}_1} &=& 601 \ {\rm GeV} & m_{\tilde{b}_2} = 961 \ {\rm GeV} \end{array}$$

Noth, S. (Mihaila, Reisser)

Guasch, Häfliger, S.

• extension to A_b terms:

$$\mathcal{L}_{eff} = -\lambda_b^0 \overline{b_R} \left[(1 + \Delta_{b,1}) \phi_1^0 + \frac{\Delta_{b,2}}{\lg \beta} \phi_2^{0*} \right] b_L + h.c.$$

$$\mathcal{L}_{eff} = -\lambda_b \overline{b_R} \left[\phi_1^0 + \frac{\Delta_b}{\lg \beta} \phi_2^{0*} \right] b_L + h.c.$$

$$\Rightarrow \qquad \Delta_b = \frac{\Delta_{b,2}}{1 + \Delta_{b,1}} \quad \text{Ghezzi, Glaus, Müller, Schmidt, S.}$$

$$\Delta_{b,1} = -\frac{2}{3} \frac{\alpha_s(\mu_R)}{\pi} M_{\tilde{g}} A_b I(m_{\tilde{b}_1}^2, m_{\tilde{b}_2}^2, M_{\tilde{g}}^2) \longrightarrow \mathsf{NNLO}$$

• strange Yukawa couplings:

$$\begin{split} \Delta_{s,1} &= -\frac{2}{3} \frac{\alpha_s(\mu_R)}{\pi} M_{\tilde{g}} A_s I(m_{\tilde{s}_1}^2, m_{\tilde{s}_2}^2, M_{\tilde{g}}^2) \\ \Delta_{s,2} &= \frac{2}{3} \frac{\alpha_s(\mu_R)}{\pi} M_{\tilde{g}} \mu \text{tg}\beta I(m_{\tilde{s}_1}^2, m_{\tilde{s}_2}^2, M_{\tilde{g}}^2) \\ \Delta_s &= \frac{\Delta_{s,2}}{1 + \Delta_{s,1}} \longrightarrow \text{NNLO} \\ & \text{Ghezzi, Glaus, Müller, Schmidt, S.} \end{split}$$

Ghezzi, Glaus, Müller, Schmidt, S.

III <u>HIGGS BOSON PRODUCTION</u>

(i) $gg \rightarrow h/H/A$

Georgi,...

Gamberini,...

S., Djouadi, Graudenz, Zerwas Dawson, Kauffman

- NLO QCD corrections: $\sim 10...100\%$
- NNLO calculated for $m_t \gg M_{\phi} \Rightarrow$ further increase by 20–30% [top mass effects small in SM] Anastasiou, Melnikov Ravindran, Smith, van Neerven

Marzani, Ball, Del Duca, Forte, Vicini Harlander, Ozeren Pak, Rogal, Steinhauser

• N³LO for $m_t \gg M_{\phi} \Rightarrow$ scale stabilization scale dependence: $\Delta \lesssim 5\%$

de Florian, Mazzitelli, Moch, Vogt Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger Ball, Bonvini, Forte, Marzani, Ridolfi • N³LL soft gluon resummation: \lesssim 2%

Catani, de Florian, Grazzini, Nason Ravindran Ahrens, Becher, Neubert, Yang Ball, Bonvini, Forte, Marzani, Ridolfi Bonvini, Marzani Schmidt, S.

• SM + 2HDM elw. corrections: $\sim 5\%$

Aglietti,... Degrassi, Maltoni Actis, Passarino, Sturm, Uccirati Jenniches, Sturm, Uccirati

• QCD corrections to squark loops: 10–100%

Mühlleitner, S. Bonciani, Degrassi, Vicini

• impl. of $gg \rightarrow \phi$ in POWHEG including mass effects @ NLO (QCD also valid for 2HDM and other Higgs extensions)

Bagnaschi, Degrassi, Slavich, Vicini

- SUSY-elw. corrections unknown
- genuine SUSY-QCD corrections: 10–100% Harlander, Steinhauser, Hofmann $[\leftarrow \Delta_b @ \text{ large tg}\beta]$ Harlander, Steinhauser, Hofmann Degrassi, Slavich Anastasiou, Beerli, Daleo Mühlleitner, Rzehak, S.

$$\sigma(gg \to \Phi) = \sigma_{LO}(g_t^{\Phi}, \tilde{g}_b^{\Phi}) \left[1 + \delta_{QCD} + \delta_{SQCD}\right]$$

PRELIMINARY

Fritz, Mühlleitner, Rzehak, S.

(ii) $b\bar{b}$ +Higgs production

NLO

exact $g \rightarrow b\overline{b}$ splitting & mass/off-shell effects no resummation of log M_H^2/m_b^2 terms

NNLO

massless/on-shell *b*'s, no p_{Tb} resummation of log M_H^2/m_b^2 terms

Bonvini, Papanastasiou, Tackmann

Forte, Napoletano, Ubiali

matching

	M_A	M_H	[GeV]	δ^A_{QCL}	δ^{A}_{SUSY}	$\delta^A_{SUSYrem}$	δ^{H}_{QCD}	δ^{H}_{SUSY}	$\delta^{H}_{SUSYrem}$
	100	113.	9	0.23	-0.30	$0.4 imes 10^{-4}$	0.27	-0.38	$0.3 imes 10^{-4}$
	200	200		0.38	-0.30	$2.9 imes10^{-4}$	0.39	-0.30	$5.8 imes10^{-4}$
7 TeV	300	300		0.46	-0.30	$6.7 imes 10^{-4}$	0.47	-0.30	$9.3 imes10^{-4}$
	400	400		0.53	-0.30	$1.3 imes10^{-3}$	0.53	-0.30	$1.5 imes10^{-3}$
	500	500		0.57	-0.30	$2.0 imes 10^{-3}$	0.59	-0.30	$2.2 imes 10^{-3}$
	100	113.	9	0.14	· -0.30	$0.4 imes 10^{-4}$	0.17	-0.38	$0.5 imes 10^{-4}$
	200	200		0.28	-0.30	$2.7 imes10^{-4}$	0.29	-0.30	$5.7 imes10^{-4}$
14 TeV	300	300		0.37	0.30	$6.5 imes10^{-4}$	0.39	-0.30	$9.3 imes10^{-4}$
14 TeV	300	300		0.37	-0.30	$6.5 imes10^{-4}$	0.39	-0.30	$9.3 imes10^{-4}$
	400	400		0.45	-0.30	$1.2 imes 10^{-3}$	0.45	-0.30	$1.5 imes10^{-3}$
	500	500		0.50	-0.30	$2.1 imes10^{-3}$	0.49	-0.30	$2.3 imes10^{-3}$
	+ ~ 0	λ	٦ ٢ - ٢	$C \sim 1$	s A	s A	sH	sН	
	ιgβ	MA		Gevj	0 ² SUSY	0 [°] _{SUSYrem}	o_{SUSY}^n	0 _{SUSY1}	<u>em</u>
	3	200	209.7	,	-0.04	2.1×10^{-4}	-0.04	5.7 imes 1	0^{-4}
	5	200	204.0		-0.06	2.4×10^{-4}	-0.06	5.3 imes 1	0-4
	7	200	202.1		-0.08	2.5×10^{-4}	-0.09	3.9 imes 1	0-4
7 TeV	10	200	200.9)	-0.12	$2.5 imes 10^{-4}$	-0.12	3.8 imes 1	0-4
	20	200	200.1		-0.21	2.6×10^{-4}	-0.21	4.4 imes 1	0-4
	30	200	200.0		-0.30	2.9×10^{-4}	-0.30	5.8 imes 1	0-4
	3	200	209.7	,	-0.04	2.0×10^{-4}	-0.04	7.2 imes 1	0-4
	5	200	204.0)	-0.06	2.2×10^{-4}	-0.06	5.0 imes 1	0-4
	7	200	202.1		-0.08	$2.4 imes10^{-4}$	-0.09	4.4 imes 1	0 ⁻⁴
14 TeV	10	200	200.9)	-0.12	$2.5 imes10^{-4}$	-0.12	4.1 imes 1	0 ⁻⁴
	20	200	200.1		-0.21	$2.7 imes10^{-4}$	-0.21	4.4 imes 1	0 ⁻⁴
	30	200	200.0)	-0.30	$2.7 imes10^{-4}$	-0.30	5.7 imes 1	0 ⁻⁴

(iii) $pp \to t\bar{b}H^- + X$

•
$$M_{H^{\pm}} < m_t - m_b$$
: $\sigma_{t\bar{b}H^-} = \sigma_{t\bar{t}} \times BR(\bar{t} \to \bar{b}H^-)$

• $M_{H^{\pm}} \sim m_t - m_b$: new NLO calculation

Degrande, Frederix, Wiesemann, Zaro

• $M_{H^{\pm}} > m_t - m_b$:

NLO

exact $g \to b \overline{b}$ splitting & mass/off-shell effects no resummation of log $M^2_{H^\pm}/m^2_b$ terms

 \rightarrow Santander matching

massless/on-shell b's, no p_{Tb} resummation of $\log M_{H^\pm}^2/m_b^2$ terms

NLO

Dittmaier, Krämer, S., Walser Plehn Flechl, Klees, Krämer, Spira, Ubiali

Degrande, Frederix, Wiesemann, Zaro

• charged Higgs:
$$\tilde{g}_b^{H^{\pm}} = \frac{\mathrm{tg}\beta}{1+\Delta_b} \left(1 - \frac{\Delta_b}{\mathrm{tg}^2\beta}\right)$$

$$\sigma_{NLO} = \sigma_{LO}|_{g_b^{H^{\pm}} \to \tilde{g}_b^{H^{\pm}}} \times \left\{ 1 + \delta_{QCD} + \delta_{SQCD}^{rem} \right\}$$

tgβ	δ^{rem}_{SUSY} [%]	
3	-5.7%	$\sim H^{\pm}$
5	-7.9%	$\leftarrow g_t$
10	-4.8%	
30	-0.13%	

Dittmaier, Krämer, S., Walser

$\mathsf{IV} \ \underline{CONCLUSIONS}$

- genuine SUSY–QCD corrections large @ large tg $\beta \rightarrow \Delta_b$
- small remainders beyond Δ_b approximation in most cases
- analogous results for strange Yukawa coupling $ightarrow \Delta_s$

