Decays of Higgs bosons into SM final states in the NMSSM – Gauge-dependence aspects

Florian Domingo BCTP - Bonn

based on (past and on-going) work in collaboration with P. Drechsel, S. Heinemeyer, S. Paßehr, G. Weiglein

KIT NEP'19 — Karlsruhe

October, 7th 2019

-Model & Motivations

Next-to-Minimal Supersymmetric Standard Model -Model and Motivations

Softly-broken SUSY extensions of the SM

- Hierarchy Problem: SUSY protects the Higgs mass from sensitivity to high-scale
- **Higgs Physics**: $m_H \sim 125$ GeV lies in the SUSY-expected range;
- One-step Unification: SUSY matter-content ensures convergence of gauge couplings;
- **Dark matter**: WIMP candidate in the presence of R-parity;
- **Top-down approach**: Supergravity, Superstrings, etc.

SUSY obviously absent at low-energies: soft-breaking at the ~TeV scale!

The μ -problem

$$W_{MSSM} \ni \mu \, \hat{H}_u \cdot \hat{H}_d \quad \rightarrow \quad W_{NMSSM} \ni \lambda \, \hat{S} \, \hat{H}_u \cdot \hat{H}_d + \kappa \hat{S}^3$$

- ▶ μ : SUSY parameter \rightarrow Natural Scale: $O(M_{\text{Planck},\text{GUT},\text{etc.}})$... or Zero!
- ► LEP Constraints on Chargino masses: $\mu \gtrsim 100 \text{ GeV}$
- Electroweak Symmetry Breaking needs: $\mu \leq O(TeV)$
- Additional Gauge-Singlet superfield \hat{S}

v.e.v.
$$\langle S \rangle = s \qquad \Rightarrow \qquad \mu_{eff} = \lambda$$

[Fayet (1975)]

new-physics;

▶ \mathbb{Z}_3 -symmetry: scale-invariant superpotential \Rightarrow *No naturalness problem!*

-Model & Motivations

NMSSM – Phenomenological motivations

Higgs phenomenology

- $m_{H_{SM}} \sim 125 \text{ GeV}$ high (?) for the MSSM $\rightarrow 2$ NMSSM mechanisms:
 - ► **Tree-level** contribution: $m_{H_{\sim SM}}^2 \simeq M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta;$
 - **Uplift** via singlet-doublet mixing \Rightarrow light singlet.
- A light (CP-even) Higgs singlet?
 - ► suppressed production cross-section (due to singlet couplings). ⇒ Limited impact of direct collider searches (LEP/LHC).
 - $+ H \rightarrow b\bar{b}$ LEP 2.3 $\sigma / H \rightarrow \gamma\gamma$ CMS 2.9 σ excesses at ~ 100 GeV!
 - Multiple-state mixing \Rightarrow Possible deviations (at the % level) from strict SM couplings for h_{125} even with decoupling doublets.
 - ► Search the singlet? \rightarrow Directly $(\gamma\gamma, \tau\bar{\tau}, b\bar{b})$, in Higgs pair production, in BSM decays, etc.
- A very light (CP-odd) Higgs singlet?
 - **Pseudo-Goldstone boson**? of $U(1)_{PQ}$ or $U(1)_{R}$.
 - Mediator of light DM annihilation? ⇒ Ensure singlino/bino relic abundance through resonance annihilation.

SUSY phenomenology

- Singlino Dark Matter.
- 'Stealth' scenarios in collider searches.

-Model & Motivations

Precision physics in the Higgs sector

Towards a precise determination of the Higgs properties
Higgs mass: 125.09 ± 0.21 ± 0.11 (LHC Run 1);
couplings to EW gauge: ~ 20% (LHC Run 1 & 2);
couplings to τ, b, t: ~ 30% (LHC Run 1 & 2);
couplings to μ, c, Zγ: on-going searches;
Higgs self-coupling: constrained by a factor 10.
Prospects of an ILC: → uncertainty < 1% on couplings to SM fermions and gauge bosons;

 \rightarrow Higgs self-couplings at 10 – 30%.

Status in SUSY models

- Higgs masses: known at (leading) 2-loop order
 - \rightarrow for h_{SM}^0 , uncertainty $\geq O(\text{GeV})$; larger for heavier states.
- ► Higgs decays: at best 1-loop (often less), large uncertainties.

 \rightarrow Improved accuracy on the theory side is needed to exploit precision tests. Many tools designed for the NMSSM (NMSSMCalc, NMSSMTools, Sloops, SoftSUSY, Spheno, etc.) with slightly different approaches / schemes. Decays of Higgs bosons into SM final states in the NMSSM - Gauge-dependence aspects

Higgs decays and gauge invariance

Higgs decays into SM final states Setting up the calculation

- We consider the **1-loop** order (+ some higher-order effects).
- ► Feynman diagrams computed with FeynArts and FormCalc.
- ► Renormalization scheme:
 - \rightarrow SM fermion and gauge boson masses and fields *on shell*.
 - \rightarrow Charged Higgs mass *on shell*.
 - \rightarrow Other parameters (tan β , μ_{eff} , λ , κ , Higgs fields, etc.) \overline{DR} .
- **Decay amplitude** defined by the LSZ reduction formula.
- \rightarrow wave-function diagrams on Higgs leg absorbed in a mixing formalism.
- \rightarrow Higgs mixing with Goldstone/weak gauge boson processed separately.
- \rightarrow no wave-function diagrams for the SM final states (on shell scheme).
- \rightarrow QED/QCD vertex corrections factorized out (add soft+hard radiation).
- \rightarrow other vertex contrib. include EW + Higgs + SM ferm. + SUSY loops.
- Higgs leg \rightarrow kinematical mass set to the loop-corrected value.
- ► Feynman-'t Hooft gauge (unless otherwise indicated).

Decays of Higgs bosons into SM final states in the NMSSM - Gauge-dependence aspects

- Higgs decays and gauge invariance

Issue 1: $h_i \rightarrow \gamma \gamma$ and the Ward identity **Decay amplitude** $\mathcal{A}[h_i(p) \rightarrow \gamma(k_1)\gamma(k_2)] = A_i \varepsilon_{\gamma}^*(k_1) \cdot \varepsilon_{\gamma}^*(k_2) + B_i [p \cdot \varepsilon_{\gamma}^*(k_1)][p \cdot \varepsilon_{\gamma}^*(k_2)] + C_i \varepsilon_{\mu\nu\rho\sigma} k_1^{\mu} \varepsilon_{\gamma}^{\nu*}(k_1) k_2^{\rho} \varepsilon_{\gamma}^{\sigma*}(k_2)$ The decay appears at the loop level. A_i, B_i, C_i are form factors. **Ward identity**

Replacement $\varepsilon_{\gamma}^*(k_1) \to k_1$ in $\mathcal{A}[h_i(p) \to \gamma(k_1)\gamma(k_2)]$ generates the identity: $A_i + M_{h_i}^2 \frac{B_i}{2} = 0$

 $(M_{h_i}$ kinematical Higgs mass vs. m_{h_i} tree-level mass)

Testing the Ward identity

- \rightarrow At the numerical level, only $M_{h_i} = m_{h_i}$ satisfies the identity.
- $\rightarrow \mathcal{L} \ni -\frac{m_{h_i}^2}{\sqrt{2}\nu} (\cos\beta X_{id}^R + \sin\beta X_{iu}^R) h_i G^+ G^-$
- → To force the identity at $M_{h_i} \neq m_{h_i}$, one can promote $m_{h_i} \rightarrow M_{h_i}$ in amplitude. \Rightarrow 1L order shift in a 1L amplitude

= O(2L).

Higgs decays and gauge invariance

Issue 2: $h_i \rightarrow WW(\gamma)$ and IR-divergences

Cancellation of IR divergences \rightarrow Only achieved for $M_{h_i} = m_{h_i}$. \rightarrow Upgrade $m_{h_i} \rightarrow M_{h_i}$ in $h_i G^+ G^$ again extends the cancellation. \leftarrow Once more: shift = O(2L). Higgs decays and gauge invariance

Issue 3: Slavnov-Taylor identity in Higgs- G^0/Z mixing

Slavnov-Taylor identity

$$\begin{split} M_Z \Sigma_{h_i G^0}(p^2) + \iota p^2 \Sigma_{h_i Z}(p^2) + M_Z(p^2 - m_{h_i}^2) f(p^2) + \text{tadpoles} &= 0 \\ & \rightarrow f(p^2) \text{ is a gauge-dependent term } \propto \xi_Z. \end{split}$$
The identity is indeed satisfied at the numerical level...

 $h_i - G^0/Z$ contribution to fermionic decays Injecting the relation between $\Sigma_{h_iG^0}$ and Σ_{h_iZ} in the amplitude: $\mathcal{R}^{h_i - G^0/Z}[h_i(p) \to f\bar{f}] = \frac{g_2 m_f t_3'}{v p^2} \left\{ \hat{\Sigma}_{h_iG^0}(p^2) - (p^2 - m_{h_i}^2) \frac{\xi_Z M_Z^2 f(p^2)}{p^2 - \xi_Z M_Z^2} \right\}$ \Rightarrow The ξ_Z -dependent part disappears only if $m_{h_i} \to M_{h_i}$ in $h_i - G^0$ couplings Decays of Higgs bosons into SM final states in the NMSSM - Gauge-dependence aspects

- Higgs decays and gauge invariance

Issue 4: Gauge invariance in e.g. $h_i \rightarrow t\bar{t}$

ξ -dependence from the charged current • In R_{ξ} gauge, considering only ξ -dependence from charged current: $\mathcal{R}^{\text{vert}}[h_i(p) \to t(p_t)\bar{t}(p_{\bar{t}})] \ni \frac{lg^3 m_t}{64\pi^2 M_{ij}^3} \bar{u}(p_t) \Big\{ (p^2 - m_{h_i}^2) \Big[(c_\beta X_{id}^R + s_\beta X_{iu}^R) I_1 + (-s_\beta X_{id}^* + c_\beta X_{iu}) I_2 \Big] \Big\} = \frac{1}{64\pi^2 M_{ij}^3} \bar{u}(p_t) \Big\{ (p^2 - m_{h_i}^2) \Big[(c_\beta X_{id}^R + s_\beta X_{iu}^R) I_1 + (-s_\beta X_{id}^* + c_\beta X_{iu}) I_2 \Big] \Big\}$ $+(-s_{\beta}X_{id}+c_{\beta}X_{iu}^{*})I_{2}']+B$ -functions $v(p_{\bar{t}})$ $I_1 \equiv \frac{\imath 16\pi^2}{m_t} \int \frac{d^D k}{(2\pi)^D} \frac{k(m_t^2 P_R + m_b^2 P_L) - m_t m_b^2}{[k^2 - m_b^2][(k - p_t)^2 - \xi \mathcal{M}_w^2][(k + p_t)^2 - \xi \mathcal{M}_w^2]}$ $I_{2} \equiv \frac{\iota 16\pi^{2}}{m_{t}} \int \frac{d^{D}k}{(2\pi)^{D}} \frac{k(m_{t}^{2}t_{\beta}^{-1}P_{R} - m_{b}^{2}t_{\beta}P_{L}) + m_{t}m_{b}^{2}(t_{\beta}P_{R} - t_{\beta}^{-1}P_{L})}{[k^{2} - m_{h}^{2}][(k - p_{t})^{2} - m_{r+1}^{2}][(k + p_{\tau})^{2} - \mathcal{E}\mathcal{M}_{r+1}^{2}]}$ $I_2' \equiv I_2(p_{\bar{t}} \leftrightarrow -p_t)$ \hookrightarrow Here, the dependence on $m_{h_i}^2$ comes both from $h_i G^+ G^-$ and $h_i H^{\pm} G^{\mp}$: $\mathcal{L} \ni \frac{m_{H^{\pm}}^{2} - m_{h_{i}}^{2}}{\sqrt{2}} \left(-s_{\beta} X_{id} + c_{\beta} X_{iu}^{*}\right) h_{i} H^{+} G^{-} + \text{h.c.}$ • The ξ -dependent *B*-functions are matched by corrections from Higgs wave-function and lead also to $\propto (p^2 - m_h^2)$. \Rightarrow To ensure gauge invariance, also $h_i H^{\pm} G^{\mp}$ need an 'upgrade'. \hookrightarrow Again a O(2L) effect at the level of the amplitude.

Case of the neutral current

Same conclusion as in the charged case with $h_i G^0 G^0$ and $h_i h_j G^0$ couplings.

Higgs decays and gauge invariance

Summary on gauge-invariance considerations

• Gauge invariance holds indeed at the order of the calculation (1L).

- But: gauge-violating pieces of 2L order are present unless
 1) the kinematical Higgs mass is set to the tree-level value;
 2) all the Higgs-Goldstone couplings are 'upgraded'.
- We choose 2), → amounting to a shift of the amplitude of 2L order;
 → 'saving' the kinematics;
 → easily interpreted in terms of EFT (Goldstone couplings related to mass).

- Higgs decays into SM fermions

Higgs decays into SM fermions - Numerical results

- QCD/QED corrections to inclusive widths known since the '80 / '90:

 → leading QCD logs can be resummed via running Yukawa couplings.
- ► Leading SUSY effects project onto dim. 4 Higgs-fermion operators.
- Electroweak corrections: reach ~ 10% for $M_A \sim 1$ TeV $\rightarrow Why$?

- Higgs decays into SM fermions

Sudakov double logarithms

Topologies with: \rightarrow internal EW gauge boson and light fermions; \rightarrow EW gauge / fermion / Higgs with mass $\sim M_H$; generate contributions $\propto \frac{g^2}{16\pi^2} \ln^2 \frac{M_V^2}{M_H^2}$. Not '*standard*' Sud. DL because massive Higgs line is EW-charged. \hookrightarrow Sud. DL can be resummed at all orders (determined by IR). Higgs decays into SM fermions

- EW effects range from ~ 10 to ~ 50% for $M_{H^{\pm}} \in [1, 100]$ TeV.
- Resummation begins to matter at ≥ 10 TeV.
- Double logarithms dominate the EW corrections.
- EW corrections dominated by double, then single logs + const.

-Higgs decays into SM fermions

Radiation of electroweak gauge bosons

- Order-counting: tree-level 3-body ~ 1L 2-body.
- Piece mediated by on-shell internal line subtracted (2-body).
- DL in gauge radiation match DL in virtual corrections.
- Significant impact on the branching ratio (via total width).

 $-SU(2)_L$ and decoupling limit

Exploiting $SU(2)_L$ in the decoupling limit

 $M_{h_i,H^{\pm}} \gg M_Z \implies SU(2)_L \text{ conserved up to } O\left(\frac{M_Z}{M_h}\right) \text{ corrections.}$ \hookrightarrow 'Heavy doublet' states are $SU(2)_L$ partners: \Rightarrow almost degenerate $M_{H^{\pm}} \approx M_H \approx M_A$; \Rightarrow also their decay widths should be related.

Example of the fermionic decays
Explicit agreement of 1L ln M_Z/M_h.
Different treatment of Higgs mixing:

→ h - H with 'low-energy' Yukawas
→ G⁰/Z - A and G⁺/W⁺ - H⁺ with Y_q(M_H²) (as hinted by QCD).

Large difference of 2L-order:

i) considered as uncertainty;
ii) harmonize mixing procedure;
iii) QCD-inclusive favors Y_a(M_H²).

 $-SU(2)_L$ and decoupling limit

$SU(2)_L$ and decays into weak gauge bosons

- $\Gamma^{\text{tree}}[A \to WW, ZZ]$ and $\Gamma^{\text{tree}}[H^+ \to W^+Z]$ exactly vanish.
- $\Gamma^{\text{tree}}[H \rightarrow WW, ZZ]$ suppressed (decoupling limit).

 \hookrightarrow No $SU(2)_L$ -conserving operator with 1 doublet + gauge triplets.

Balance between mixing and vertex

- Large cancellations between mixing and vertex contributions.
- Inclusion of O(α_Sα_t) corrections in mixing produces an imbalance (not matched by corresponding order in vertices).

⇒ Mixing orders is misleading.
 ⇒ Higher orders in mixing (but not in vertex) worsen the prediction.

Conclusions

- ► Effects beyond 1L can be large, especially for heavy states.
 → Symmetries (gauge-invariance, global SU(2)_L) can be used to control them.
- Processing mixing and vertex at different orders is artificial and source of problematic effects.
- 3-body decays should be included together with 1L 2-body for a consistent evaluation of branching ratios at this order.
- ► These effects are not restricted to the NMSSM...