## NLO electroweak corrections to $H \rightarrow h h$ in the singlet extension

#### Tania Robens

based on

D. Lopez-Val, TR (PRD 90 (2014) 114018) F. Bojarski, G. Chalons, D. Lopez-Val, TR (JHEP 1602 (2016) 147)

[TR (arXiv:1908.10809)]

and work in progress...

Rudjer Boskovic Institute

#### *KIT-NEP '19* Karlsruhe Institute of Technology, Karlsruhe, Germany 8.10.2019

Tania Robens

hh@Singlet@NLO

3

#### Higgs Singlet extension (aka The Higgs portal)

## The model

- Singlet extension: simplest extension of the SM Higgs sector
- add an **additional scalar**, singlet under SM gauge groups (further reduction of terms: impose additional symmetries)
- collider phenomenology studied by many authors: Schabinger, Wells; Patt, Wilzcek; Barger ea; Bhattacharyya ea; Bock ea; Fox ea; Englert ea; Batell ea; Bertolini/ McCullough; ...
- our approach: minimal: no hidden sector interactions
- equally: Singlet acquires VeV

## Singlet Extension: Classical Lagrangian

$$\mathscr{L}_{\textbf{xSM}} = \mathscr{L}_{\text{gauge}} + \mathscr{L}_{\text{fermions}} + \mathscr{L}_{\text{Yukawa}} + \mathscr{L}_{\text{scalar}} + \mathscr{L}_{\textbf{GF}} + \mathscr{L}_{\textbf{ghost}}$$

$$\mathscr{L}_{\text{scalar}} = (\mathcal{D}^{\mu}\Phi)^{\dagger} \mathcal{D}_{\mu}\Phi + \partial^{\mu}S\partial_{\mu}S - \mathcal{V}(\Phi, S)$$
  
 $\mathcal{V}(\Phi, \mathbf{S}) = \mu^{2} \Phi^{\dagger} \Phi + \lambda_{1} |\Phi^{\dagger}\Phi|^{2} + \mu_{s}^{2} S^{2} + \lambda_{2} S^{4} + \lambda_{3} \Phi^{\dagger} \Phi S^{2} .$ 

- $\bullet \ \mathscr{L}_{gauge}, \ \mathscr{L}_{fermions}, \ \mathscr{L}_{Yukawa}$  as in SM
- BRST invariance  $\Rightarrow \delta_{\text{BRST}} \mathscr{L}_{GF} = -\delta_{\text{BRST}} \mathscr{L}_{ghost}$
- more later...

Tania Robens

hh@Singlet@NLO

KIT-NEP, 8.10.2019

3

<ロ> (日) (日) (日) (日) (日)

#### Singlet extension: free parameters in the potential

VeVs: 
$$H \equiv \begin{pmatrix} 0 \\ \frac{\tilde{h}+v}{\sqrt{2}} \end{pmatrix}, \ S \equiv \frac{h'+v_s}{\sqrt{2}}.$$

• potential: 5 free parameters: 3 couplings, 2 VeVs

 $\lambda_1, \lambda_2, \lambda_3, v, v_s$ 

rewrite as

 $\mathbf{m}_{\mathbf{h}}, \mathbf{m}_{\mathbf{H}}, \sin \alpha, \mathbf{v}, \tan \beta$ 

• fixed, free

$$\sin \alpha$$
: mixing angle,  $\tan \beta = \left(\frac{v}{v_s}\right)^{-1}$ 

• physical states  $(m_h < m_H)$ :

$$\begin{pmatrix} \mathbf{h} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \tilde{h} \\ h' \end{pmatrix},$$
hh@Singlet@NLO
KIT-NEP, 8.10.2019

Tania Robens

Phenomenology (in the following: focus on  $m_h \sim 125 \, {\rm GeV}$ )

- SM-like couplings of light/ heavy Higgs: rescaled by  $\sin \alpha$ ,  $\cos \alpha$
- in addition: **new physics channel:**  $H \rightarrow hh$

 $\Gamma_{\rm tot}(H) = \sin^2 \alpha \, \Gamma_{\rm SM}(H) + \Gamma_{H \to h h},$ 

SM like decays parametrized by

 $\kappa \equiv \frac{\sigma_{\rm BSM}\,\times\,{\rm BR}_{\rm BSM}}{\sigma_{\rm SM}\,\times\,{\rm BR}_{\rm SM}}\,=\,\frac{\sin^4\alpha\,\Gamma_{\rm tot,SM}}{\Gamma_{\rm tot}}$ 

new physics channel parametrized by

 $\kappa' \equiv \frac{\sigma_{\rm BSM} \times {\rm BR}_{H \to hh}}{\sigma_{\rm SM}} = \frac{\sin^2 \alpha \, \Gamma_{H \to hh}}{\Gamma_{\rm CM}}$ ◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへぐ hh@Singlet@NLO

Tania Robens

KIT-NEP. 8.10.2019

## Constraints on the model [1908.10809]

#### • strongest constraints:

- $m_H \gtrsim 850\,{
  m GeV}$  : perturbativity of couplings
- $m_H \in [650; 850] \text{GeV}$  :  $m_W$  @ NLO
- $m_H \in [125; 650] {
  m GeV}$  : experimental searches/signal strength
  - $m_h \lesssim 120 \, {
    m GeV}$  : SM-like Higgs coupling rates (+ LEP)

 $\Rightarrow \kappa \leq 0.06$  for all masses considered here

 $\Gamma_{tot} \, \lesssim \, 0.02 \, m_H$ 

# ⇒ Highly (??) suppressed, narrow(er) heavy scalars ⇐ ⇒ new (easier ?) strategies needed wrt searches for SM-like Higgs bosons in this mass range ⇐

[width studies (from  $\sim 2015$ ): cf. Maina ; Kauer, O'Brien; Kauer, O'Brien, Vryonidou; Ballestrero, Maina; Dawson, Lewis; Martin; Jung, Yoon, Song; Djouadi, Ellis, [Popov], Quevillon; Carena, Liu, Riembau; Kauer, Lind, Maierhöfer, Song; ...]

Tania Robens

hh@Singlet@NLO

KIT-NEP, 8.10.2019

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

### Combined limits on $|\sin \alpha|$ [1908.10809]



 $m_W$ , perturbativity, LHC direct searches, Higgs Signal strength

Tania Robens

hh@Singlet@NLO

KIT-NEP, 8.10.2019

## Renormalization: gauge fixing

Our choice: non-linear gauge fixing !!

- reason: want to check gauge-parameter dependence for physical processes
- implementation: SLOOPS [Boudjema ea, '05; Baro ea, '07-'09]

$$\mathscr{L}_{GF} = -\frac{1}{\xi_W} F^+ F^- - \frac{1}{2\xi_Z} |F^Z|^2 - \frac{1}{2\xi_A} |F^A|^2$$

$$F^{\pm} = \left(\partial_{\mu} \mp i \epsilon \tilde{\alpha} A_{\mu} \mp i g \cos \theta_{W} \tilde{\beta} Z_{\mu}\right) W^{\mu +} \\ \pm i \xi_{W} \frac{g}{2} \left(v + \tilde{\delta}_{1} h + \tilde{\delta}_{2} H \pm i \tilde{\kappa} G^{0}\right) G^{+} \\ F^{Z} = \partial_{\mu} Z^{\mu} + \xi_{Z} \frac{g}{2 \cos \theta_{W}} \left(v + \tilde{\epsilon}_{1} h + \tilde{\epsilon}_{2} H\right) G^{0} \\ F^{A} = \partial_{\mu} A^{\mu} .$$

•  $\tilde{\alpha}, \tilde{\beta}, ...$ : non-linear gauge-fixing parameters •  $\tilde{\alpha} = \tilde{\beta} = ... = 0, \xi = 1 \Rightarrow$  back to t'Hooft-Feynman gauge

## Renormalization: SM inheritance

- S: singlet under SM gauge group
- $\Rightarrow$  in the electroweak gauge sector: follow SM prescriptions\*
  - scalar sector: counterterms for

$$T_{h,H}; [v]; v_s; m_{h,H}^2; Z_{h,H,hH,Hh}; m_{hH}^2$$

⇒ need to be determined by suitable renormalization conditions

\* performed in 2 different electroweak schemes:  $\alpha_{em} : \alpha_{em}(0), m_W, m_z$  as input;  $G_F : \alpha_{em}(0), G_F, m_z$  as input, related via  $\Delta r$ 

#### ... and in more detail...

$$\begin{split} \mathbf{v}_{s}^{0} &\longrightarrow \mathbf{v}_{s} + \delta \mathbf{v}_{s}, \\ T_{i}^{0} &\longrightarrow T_{i} + \delta T_{i}, \\ \mathcal{M}_{hH}^{2} &\longrightarrow \mathcal{M}_{hH}^{2} + \delta \mathcal{M}_{hH}^{2} \end{split}$$
 where  $\delta \mathcal{M}_{hH}^{2} = \begin{pmatrix} \delta m_{h}^{2} & \delta m_{hH}^{2} \\ \delta m_{hH}^{2} & \delta m_{H}^{2} \end{pmatrix}$ 

$$\left(\begin{array}{c}h\\H\end{array}\right)^{0} \longrightarrow \left(\begin{array}{c}1+\frac{1}{2}\delta Z_{h} & \frac{1}{2}\delta Z_{hH}\\\frac{1}{2}\delta Z_{Hh} & 1+\frac{1}{2}\delta Z_{H}\end{array}\right) \left(\begin{array}{c}h\\H\end{array}\right)$$

+ renormalization re electroweak scheme (e.g.  $\delta e, \delta m_{W^2}^2, \delta m_Z^2$ )

Tania Robens

hh@Singlet@NLO

KIT-NEP, 8.10.2019

æ

イロト イポト イヨト イヨト 三日

KIT-NEP. 8.10.2019

## Renormalization conditions

### $\Rightarrow$ Our choices $\Leftarrow$

- Tadpoles:  $\delta T = -T [\hat{\tau} = 0] \Rightarrow$  stay in ew minimum
- $\delta v_s = 0$  (not fixed by any measurement) !!! choice !!! [no UV-divergence ! ; see e.g. Sperling, Stöckinger, Voigt, '13]
- $\delta m_{h,H}, \, \delta Z_{H,h}$ : on-shell
- difficult part off-diagonal terms  $m_{hH}^2$ ,  $\delta Z_{hH}$  !!
- "naive" choice ⇒ can lead to gauge-parameter dependent physical results ⇒ next slides...

[many similar discussions in recent years; e.g.: Krause, Lorenz, Mühlleitner, Santos, Ziesche; Denner, Jenniches, Lang, Sturm; Kanemura, Kikuchi, Sakurai, Yagyu; Krause, Lopez-Val, Mühlleitner, Santos; Denner, Dittmaier, Lang; ...]

[see also talks by F. Domingo and L. Fritz]

Tania Robens

hh@Singlet@NLO

## Different choices for mixed terms $\delta Z_{Hh,hH}$ , $\delta m_{hH}^2$

Always: 
$$\operatorname{\mathbf{Re}} \hat{\Sigma}_{hH}(m_h^2) = 0; \operatorname{\mathbf{Re}} \hat{\Sigma}_{hH}(m_H^2) = 0$$

- **Onshell scheme**:  $\delta Z_{hH} = \delta Z_{Hh}$
- drawback: predictions remain gauge-parameter dependent !!
  - Mixed  $\overline{\rm MS}/{\rm on-shell}$ : fix  $\delta m^2_{hH}$  through UV-divergence of  $\lambda_2$
- $\Rightarrow$  drawback: corrections  $\sim \sin^{-1} \alpha$ ,  $\cos^{-1} \alpha$ , can get large !!
  - improved onshell

$$\delta m_{hH}^2 = \mathbf{Re} \Sigma_{hH}(p_*^2) \big|_{\xi_W = \xi_Z = 1, \tilde{\delta}_i = 0}, \ p_*^2 = \frac{m_h^2 + m_H^2}{2}$$

[similar result e.g. in Baro, Boudjema, Phys. Rev. D80 (2009) 076010; ...]

#### ⇒ drawback: NONE !!

Tania Robens

hh@Singlet@NLO

KIT-NEP, 8.10.2019

#### ... and in numbers...

#### NLO corrections to $H \rightarrow h h$ decay, gauge-parameter dependence

|             | $\delta \Gamma_{H \to hh}^{1-loop}$ [GeV] |                                 |                                  |  |  |  |  |
|-------------|-------------------------------------------|---------------------------------|----------------------------------|--|--|--|--|
| Scheme      | $\Delta=0,\{nlgs\}=0$                     | $\Delta = 10^7, \{ nlgs \} = 0$ | $\Delta = 10^7, \{ nlgs \} = 10$ |  |  |  |  |
| OS          | $+4.26334888 \times 10^{-3}$              | $+4.26334886 \times 10^{-3}$    | $-5.27015844 \times 10^{3}$      |  |  |  |  |
| Mixed MS/OS | $+6.8467506 \times 10^{-3}$               | $+6.8467504 \times 10^{-3}$     | $+6.8467500 \times 10^{-3}$      |  |  |  |  |
| Improved OS | $+3.9393569 \times 10^{-3}$               | $+3.9393568 \times 10^{-3}$     | $+3.9393556 \times 10^{-3}$      |  |  |  |  |

 $\delta \Gamma^{1-\text{loop}}_{H \rightarrow hh}$ 

| $\delta m_{hH}^2 ^{\infty}$ | $\{nlgs\} = 0$        | $\{nlgs\} = 10$       | $\delta m_{hH}^2  ^{fin}$ | $\{nlgs\} = 0$        | $\{nlgs\} = 10$       |
|-----------------------------|-----------------------|-----------------------|---------------------------|-----------------------|-----------------------|
| OS                          | $-5.80 \times 10^{2}$ | $-9.44 \times 10^{2}$ | OS                        | $+5.75 \times 10^{3}$ | $+8.80 \times 10^{3}$ |
| Mixed MS/OS                 | $-5.80 \times 10^{2}$ | $-5.80 \times 10^{2}$ | Mixed MS/OS               | $-2.48 \times 10^{2}$ | $-2.48 \times 10^{2}$ |
| Improved OS                 | $-5.80 \times 10^{2}$ | $-5.80 \times 10^{2}$ | Improved OS               | $+5.72 \times 10^{3}$ | $+5.72 \times 10^{3}$ |

 $\delta m_{hH}^2$ 

 $\Delta$  : UV-divergence; {ngls} : non-linear gauge fixing parameters

Tania Robens

hh@Singlet@NLO

<□ > < □ > < □ > < 三 > < 三 > < 三 > 三 の Q (~ KIT-NEP, 8.10.2019

## First application: NLO corrections to $m_W$ (D. Lopez-Val, TR, PRD 90 (2014) 114018)

- electroweak fits: fit O(20) parameters, constraining S, T, U
- ullet idea here: single out  $m_W$ , measured with error  $\sim 10^{-5}$
- first step on the road to full renormalization
- requires recursive solution for  $m_W$

$$m_W^2 = \frac{1}{2} m_Z^2 \left[ 1 + \sqrt{1 - \frac{4 \pi \alpha_{\rm em}}{\sqrt{2} \, G_F \, m_Z^2} \left[ 1 + \Delta \, r(m_W^2) \right]} \right]$$

Tania Robens

hh@Singlet@NLO

KIT-NEP, 8.10.2019

## First application: NLO corrections to $m_W$ (D. Lopez-Val, TR, PRD 90 (2014) 114018)

#### **Contribution to** *m<sub>W</sub>* for different Higgs masses



#### Renormalization: numerical results





#### "typical" size of corrections

Tania Robens

hh@Singlet@NLO

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > 
 KIT-NEP, 8.10.2019

- 2

#### Renormalization: numerical results, $m_h = 125 \,\mathrm{GeV}$

#### all results here for $\Gamma_{H \rightarrow h h}$



exlusions (left):  $m_W$ , vacuum stability ; white space (right): corrections > 100 %

Tania Robens

hh@Singlet@NLO

→ < □ → < ≥ → < ≥ → ≥ </p>

KIT-NEP, 8.10.2019

#### Renormalization: numerical results, $m_H = 125 \,\mathrm{GeV}$

#### all results here for $\Gamma_{H \rightarrow hh}$



#### exlusions: signal strength, LEP searches

Tania Robens

hh@Singlet@NLO

#### Results for benchmarks (BR max)

| high mass region |            |                 |                          |             | low mass region |                      |                 |                          |             |  |
|------------------|------------|-----------------|--------------------------|-------------|-----------------|----------------------|-----------------|--------------------------|-------------|--|
|                  | $m_H[GeV]$ | $ \sin \alpha $ | $BR^{H \rightarrow h h}$ | tan $\beta$ |                 | m <sub>h</sub> [GeV] | $ \sin \alpha $ | $BR^{H \rightarrow h h}$ | tan $\beta$ |  |
| BHM1             | 300        | 0.31            | 0.34                     | 3.71        | BLM1            | 60                   | 0.9997          | 0.26                     | 0.29        |  |
| BHM2             | 400        | 0.27            | 0.32                     | 1.72        | BLM2            | 50                   | 0.9998          | 0.26                     | 0.31        |  |
| BHM3             | 500        | 0.24            | 0.27                     | 2.17        | BLM3            | 40                   | 0.9998          | 0.26                     | 0.32        |  |
| BHM4             | 600        | 0.23            | 0.25                     | 2.70        | BLM4            | 30                   | 0.9998          | 0.26                     | 0.32        |  |
| BHM5             | 700        | 0.21            | 0.24                     | 3.23        | BLM5            | 20                   | 0.9998          | 0.26                     | 0.31        |  |
| BHM6             | 800        | 0.21            | 0.23                     | 4.00        | BLM6            | 10                   | 0.9998          | 0.26                     | 0.30        |  |

|      | $\Gamma_{H \rightarrow hh}^{LO}$ | $\Gamma_{H \rightarrow hh}^{NLO}$ | $\delta_{\alpha}$ [%] | δ <sub>GF</sub> [%] | Г <sub>Н</sub> |      | $\Gamma^{LO}_{H \rightarrow hh}$ | $\Gamma_{H \rightarrow hh}^{NLO}$ | $\delta_{\alpha}$ [%] | δ <sub>GF</sub> [%] | Г <sub>Н</sub> |
|------|----------------------------------|-----------------------------------|-----------------------|---------------------|----------------|------|----------------------------------|-----------------------------------|-----------------------|---------------------|----------------|
| BHM1 | 0.399                            | 0.413                             | 3.411                 | 3.291               | 1.210          | BLM1 | 1.426                            | 1.536                             | 7.765                 | 7.763               | 5.506          |
| BHM2 | 0.963                            | 1.026                             | 6.485                 | 6.272               | 3.092          | BLM2 | 1.439                            | 1.472                             | 2.305                 | 2.304               | 5.520          |
| BHM3 | 1.383                            | 1.463                             | 5.803                 | 5.604               | 5.299          | BLM3 | 1.423                            | 1.432                             | 0.586                 | 0.586               | 5.504          |
| BHM4 | 2.067                            | 2.161                             | 4.520                 | 4.361               | 8.574          | BLM4 | 1.419                            | 1.415                             | -0.272                | -0.272              | 5.500          |
| BHM5 | 2.637                            | 2.717                             | 3.027                 | 2.918               | 11.413         | BLM5 | 1.431                            | 1.425                             | -0.445                | -0.445              | 5.512          |
| BHM6 | 3.798                            | 3.867                             | 1.826                 | 1.759               | 17.204         | BLM6 | 1.427                            | 1.421                             | -0.438                | -0.438              | 5.508          |

#### $\Longrightarrow$ "typical" corrections between .2 and 20 % $\Leftarrow$

[tan  $\beta$  defined in  $G_F$  scheme]

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 = 釣�()

KIT-NEP, 8.10.2019

hh@Singlet@NLO

Tania Robens

- Singlet extension: **simplest extension of the SM Higgs sector**, easily identified with one of the benchmark scenarios of the HHXWG (cf. also YR3,4, Snowmass report, Dihiggs white paper, ...)
  - $\Rightarrow$  complete NLO ew treatment
  - $\Rightarrow$  comparison of different schemes
  - $\Rightarrow$  "typical" corrections  $\sim$  10 %

#### $\Longrightarrow$ STAY TUNED $\Leftarrow$

< ロ > < 同 > < 回 > < 回 > < 回 >

KIT-NEP. 8.10.2019

- 3

## Appendix

Tania Robens

hh@Singlet@NLO

## Parameter count

• gauge eigenbasis:

$$\lambda_{1,2,3}, v, v_s, \mu^2, \mu_s^2, g_1, g_2$$

• can be rewritten:

$$T_{h,H}, m_h^2, m_H^2, m_{hH}^2, \tan \beta \equiv \frac{v_s}{v}, \underbrace{m_W^2, m_Z^2, v}_{\text{ew scheme}}$$

- minimization:  $T_i = 0$
- h, H mass-eigenstates:  $m_{hH}^2 = 0$

$$\delta lpha$$
 and  $\delta m^2_{hH}$ ; Re  $\hat{\Sigma}_{hH}(p^2)$ 

can also renormalize mixing angle, such that

$$\alpha^{\mathbf{0}} = \alpha + \delta \alpha$$

Connection to  $\delta m_{hH}^2$ 

$$\delta \alpha = \frac{1}{m_H^2 - m_h^2} \, \delta m_{hH}^2$$

$${\sf Re}\,\hat{\Sigma}_{hH}(p^2) = \\ {\sf Re}\,\Sigma_{hH}(p^2) + \frac{1}{2}\delta Z_{hH}(p^2 - m_h^2) + \frac{1}{2}\delta Z_{Hh}(p^2 - m_H^2) - \delta m_{hH}^2$$

Tania Robens

hh@Singlet@NLO

KIT-NEP, 8.10.2019

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへぐ

### Coupling and mass relations

$$m_h^2 = \lambda_1 v^2 + \lambda_2 x^2 - \sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2},$$
 (1)

$$m_{H}^{2} = \lambda_{1}v^{2} + \lambda_{2}x^{2} + \sqrt{(\lambda_{1}v^{2} - \lambda_{2}x^{2})^{2} + (\lambda_{3}xv)^{2}}, \quad (2)$$

$$\sin 2\alpha = \frac{\lambda_3 x v}{\sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2}},$$

$$\cos 2\alpha = \frac{\lambda_2 x^2 - \lambda_1 v^2}{\sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2}}.$$
(3)

hh@Singlet@NLO

Tania Robens

- 31

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

KIT-NEP. 8.10.2019

#### Theoretical and experimental constraints on the model

our studies:  $m_{h,H} = 125.09 \,\text{GeV}, \, 0 \,\text{GeV} \le m_{H,h} \le 1 \,\text{TeV}$ 

- Iimits from perturbative unitarity
- 2 limits from EW precision observables through S, T, U
- Special: limits from W-boson mass as precision observable
- perturbativity of the couplings (up to certain scales\*)
- vacuum stability and minimum condition (up to certain scales\*)
- **o collider limits** using HiggsBounds
- measurement of light Higgs signal rates using HiggsSignals and ATLAS-CONF-2015-044 [signal strength combination]

(debatable: minimization up to arbitrary scales,  $\Rightarrow$  perturbative unitarity to arbitrary high scales [these are common procedures though in the SM case])

```
(*): only for m_h=125.09\,{
m GeV}
```

Tania Robens

hh@Singlet@NLO

## Results from generic scans and predictions for LHC 14 (TR, T. Stefaniak, arXiv:1601.07880)





Image: A match a ma

KIT-NEP. 8.10.2019

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

KIT-NEP. 8.10.2019

## Comments on constraints (2) - running couplings and vacuum

- perturbativity:  $|\lambda_{1,2,3}(\mu_{run})| \leq 4\pi$
- **2** potential bounded from below:  $\lambda_1, \lambda_2 > 0$
- **③** potential has local minimum:  $4\lambda_1\lambda_2 \lambda_3^2 > 0$

 $\implies$  need (2), can debate about (1), (3) at all scales  $\Leftarrow$ 



#### limits on $\Gamma_{H \rightarrow h h}$ , $m_H = 600 \,\mathrm{GeV}$



- constraint from  $\mu$  on sin  $\alpha$ :  $\Gamma_{H \to hh}$  already small ( $\lesssim 0.08 m_H$ )
- running of couplings: even stronger constraints

Tania Robens

hh@Singlet@NLO

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Interim comment on total width

#### • Total width greatly reduced



width over mass

suppression factor of width

(ロ) (部) (目) (日) (日)

KIT-NEP. 8.10.2019