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Overview

• GBC
• TLDR



Classic BSM perspective on the Higgs mass

For many years the standard example has been the MSSM for ∼ TeV-scale SUSY:
• Quartic predicted to be determined entirely by gauge couplings at tree level – in

largeMH limit have

λ =
1

8
(g2
Y + g2

2) cos2 2β =
M2
Z

2v2
cos2 2β

• Hence→mh(tree) 6MZ

• δm2
h(loops) > (125GeV)2 − (MZ)

2 > (86GeV)2 &m2
h(tree)

• Can have δmh(two loops) . 10 GeV→ δm2
h(two loops) ∼ 15%m2

h!
• While at three-loop order, have δmh ∼ few hundred MeV,
→ δm2

h(three loops) . 1%m2
h

This has prompted much work on precision calculations of the Higgs mass in BSM
theories.

Equivalently we need two-loop threshold corrections in the EFT approach, and this can
be extracted from the same calculations by matching pole masses.



But there is a technical barrier for any theory other than the gaugeless limit of the
MSSM: the Goldstone Boson Catastrophe.

This includes the Standard Model where it was studied by [Martin, ’14],
[Elias-Miro, Espinosa, Konstandin, ’14]!

• Consider the Abelian Goldstone Model of one complex scalar
Φ = 1√

2
(v+h+ iG) and tree-level potential

V = µ2|Φ|2 + λ|Φ|4.

• This is a nice prototype for the Standard Model in Landau gauge – but a subtle
difference is that the Goldstone boson is physical!

• At tree level, the tadpole equation gives µ2 + λv2 = 0, and the masses are
m2
G = µ2 + λv2,M2

h = µ2 + 3λv2.

• Expand the tree-level potential:

V(0) ⊃ hv(µ2 + λv2) +
1

2
(µ2 + λv2)G2 +

1

2
(µ2 + 3λv2)h2 + ...

≡ hvm2
G +

1

2
m2
GG

2 +
1

2
(m2

G +m2
h)h

2 + ...

• But we usem2
G ≡ µ2 + λv2 to calculate loops, and once we include loop

corrections we have

0 = µ2 + λv2 +
1

v

∂∆V

∂h

∣∣∣∣



Treatment of tadpoles

The “Martin” approach:
• Fix vacuum expectation values and adjust masses order by order, cf
µ2 = −λv2 − 1

v
∂∆V
∂h in SM:

m2
G = O(1 − loop)

may be negative!
• Gauge invariance of result is not manifest
• Avoids all “internal” diagrams, in principle just need to calculate the genuine

two-loop tadpoles ...
• ... except that, as we saw, to solve the GBC/respect perturbation series, we need

some extra equivalent contributions.

Alternative approaches that are not often used in BSM: Jaergerlehner-Fleischer (see
Rui Santos’ talk yesterday)↔ vev renormalisation; and MR Kniehl et al:
• Work with tree-level expectation values and masses: m2

G = 0

• Include all internal (but still 1PI) diagrams)
• Now we would need to include reducible diagrams in all processes, e.g. Z

self-energy ...



Tadpoles

The blob represents the three genuine two-loop tadpole topologies:



Formulation of the GBC
Recall that

m2
G = ±O(1− loop) or m2

G = 0

At one loop, this is benign enough:

• For tadpoles proportional to hGG coupling

T ∼ λv

∫
ddq

q2 −m2
G

∝ m2
G(logm2

G − 1)

• For masses, the self-energy diagrams give

Π ∼ λ2v2

∫
ddq

(q2 −m2
G)((q+ p)2 −m2

G

∝ (logp2 − 2)

• So we see that we need to include momentum at one loop for
this model (or the Standard Model in Landau gauge) – more
later.



Beyond one loop

At two loops we find that the tadpole equations give (with
A(x) ≡ x(log x/Q2 − 1))

0 =m2
Gv+

λv

16π2

[
3A(m2

h) +A(m
2
G)

]
︸ ︷︷ ︸

1-loop

+
log

m2
G

Q2

(162)2

[
3λ2vA(m2

G) +
4λ3v3

M2
h

A(M2
h)

]
+

regular form2
G→0︷︸︸︷

· · ·︸ ︷︷ ︸
2-loop

The problem then extends to two-loop self energies, and becomes
even worse for three-loop tadpoles etc.



GB Catastrophe in the MSSM
The problem was identified early on when trying to use the effective potential approach
on the full MSSM potential – From S. Martin [hep-ph/0211366]:
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Solid line: including EW effects, dashed line without

This shows both the GB catastrophe nearQ = 568 GeV and the ‘Higgs boson
catastrophe’ near 463 GeV.



So what happened after 2002?
• Martin’s calculation was in any case not publically available, nor were there

closed-form expressions.
• Instead, until recently almost all spectrum generators for the MSSM (SPheno,

SoftSUSY, FeynHiggs) used routines from P. Slavich for αsαt and (Yukawa4)
corrections – performed in the gaugeless limit at two loops.

• But: in the MSSM the quartic coupling is given at tree-level by the gauge
couplings:

L ⊃ −
g2
Y + g2

2

8
(|Hu|

2 − |Hd|
2)2 −→

gY ,g2→0
0.

• This means that the Goldstone boson does not couple to the Higgs, so the
dangerous terms are absent!

• For a long time the problem remained neglected: (full) electroweak corrections
were never computed beyond the SM



Resummation
A solution for the Standard Model was proposed in [Martin, ’14], [Elias-Miro, Espinosa,
Konstandin, ’14]:

The daisy diagram contributes the most singular
term at any fixed loop order; it has the most soft
Goldstone propagators – each term looks like

∫
d4q

(ΠGG(q
2))n

(q2 −m2
G)
n

∼ (ΠGG(0))n
∂nf(m2

G)

∂(m2
G)
n

f(m2
G) = −

i

2
C

∫
ddq log(−q2 +m2

G)

• f(x) ≡ 1
4x

2(logx− 3
2 ).

• But if we sum it to all orders, then we will just
find f(m2

G +ΠGG(0))

Both papers agree that we should use instead use the resummed potential

V̂eff ≡Veff +
1

16π2

[
f(m2

G +∆) −

l−1∑
n=0

∆n

n!

(
∂

∂m2
G

)n
f(m2

G)

]
.



Generalising

If we want to apply this to general theories, however, we have two problems:

1. Identifying the Goldstone boson(s) among the scalars: in general the fields can
mix!

2. Taking derivatives of the potential as a function of masses and couplings
generally means taking derivatives of mixing matrices.

[Martin, Kumar ’16] applied this to find the tadpoles in the MSSM with CP conservation,
where they could use 2× 2 matrices and do all the derivatives explicitly.

We can do better by taking all of the derivatives implicitly.

We can do better still by adopting a different solution.



On-shell scheme

[Braathen, MDG ’16]

We saw that we can cure the IR divergences by resumming the Goldstone boson
propagators, so that the effective mass in the loop functions becamem2

G +∆ = 0.
But we can do this more directly by just putting the Goldstone boson on shell:

(m2
G)

run. ≡ (m2
G)

OS −ΠGG((m
2
G)

OS)

We can do this directly in the tadpole equations – and also the self-energies! So then
there should be no need to take derivatives of couplings ... exactly what we want.
For example, applying the above shift to the one loop tadpole gives a two-loop
correction:

∂V

∂v
⊃ λv

16π2
A(m2

G) =
λv

16π2

[
A((m2

G)
OS︸ ︷︷ ︸

→0

−ΠGG((m
2
G)

OS) log
(m2

G)
OS

Q2︸ ︷︷ ︸
cancels divergent part

+ ...︸︷︷︸
3−loop

]

We also see that ΠGG((m2
G)

OS) = Πg(0) (at least at this loop order) automatically!



Illustration
To see why this works, let us look at the scalar-only case. There are three classes of
tadpole diagrams:

We find that the divergences only come from the TSS and TSSSS topologies, and they
correspond to a Goldstone self-energy as a subdiagram and exactly cancel out against
the on-shell shift:



Mass diagrams

We also find that we can apply our on-shell scheme to the cancellation of divergences
in self-energies! This seemed hopeless in the former approaches ... We can divide the
topologies into three categories:



Mass diagram divergences

Again we find that the divergences inm2
G arise from Goldstone boson propagator

subdiagrams:

... and once more the one-loop shifts from our on-shell scheme exactly cancel the
divergences (but leave a finite momentum-dependent piece).



Generalised effective potential limit
Since we see that there are classes of diagrams that are divergent when the
p2 ≡ s 6= 0 and the Goldstone bosons are on-shell, the obvious response is that we
cannot avoid using momentum dependence – but this is computationally expensive.
Instead, we can expand the self-energies as:

Π
(2)
ij (s) =

log(−s)
s

Π
(2)
−1 l,ij +

1

s
Π

(2)
−1,ij +Π

(2)

l2,ij
log

2
(−s) +Π

(2)
l,ij log(−s) +Π(2)

0,ij

+

∞∑
k=1

Π
(2)
k,ij

sk

k!

If we discard all terms O(s) and higher, we have a generalised effective potential
approximation! We can find closed forms for the singular terms, e.g.

U(0, 0, 0,u) = (logu− 1) log(−s) −
π2

6
+

5

2
− 2 logu−

1

2
log

2
u+O(s).

This turns out to be a very good approximation, e.g. even in the Standard Model:

SARAH/SPheno SMH (code by Martin & Robertson)
ξ 1 0.01 0

2` momentum partial partial full none
dependence s =m2

h|tree s =m2
h|tree iterative s = 0

m2`
h (GeV) 125.083 125.134 125.176 125.121

... alternatively it would be good to have the full momentum dependence!



“Consistent Tadpoles”

[Braathen, MDG, Staub ’17]

Another way to solve the problem: expand the masses perturbatively→

µ2 =− λv2 −
1

v

∂∆V(µ)

∂v

=(µ2)tree −
1

v

∆V((µ2)tree))

∂v
+

1

v2

[(
∂2∆V

∂v∂µ2

)(
∂∆V

∂v

)]
µ2=(µ2)tree

In our example onlymG andmh depend on µ, and it only enters the loop functions
through those masses, so writing T ≡ ∂∆V

∂v ≡ T
(1) + T (2) + ... and

µ2 = (µ2)tree + (µ2)(1) + (µ2)(2) we have

(µ2)(1) =−
1

v
T (1)

∣∣∣∣
µ2=−λv2

(µ2)(2) =−
1

v
T (2)

∣∣∣∣
µ2=−λv2

+
1

v
T (1)

[
∂T (1)

∂m2
G︸ ︷︷ ︸

IR divergences cancel

+
∂T (1)

∂m2
h︸ ︷︷ ︸

IR safe

]
µ2=−λv2

This is termed “consistently solving the tadpole equations.” But it solves the problem in
the same way as our on-shell approach!



Key difference is we get (1− loop)2 finite shifts to tadpoles and
self-energies for all terms that depend on µ2 (or equivalent
parameter):

∆T (2) =−
1

v
T (1)

[
∂T (1)

∂m2
G

+
∂T (1)

∂m2
h

]
and also for self-energies:

∆Π(2) ⊃−
1

v
T (1)

[
∂Π(1)

∂m2
G

+
∂Π(1)

∂m2
h

]
New: this is equivalent to including a counterterm for the µ2

parameter modulo an important subtlety in Landau gauge/gaugeless
limit.

It is similar – but not identical – to including tadpole/vev counterterms
(Jaegerlehner-Fleischer), or working at tree-level and including
tadpole diagrams (mr/Kniehl et al).

All three new approaches solve the GBC in the same way.



Two different catastrophes

Using “Martin-style” tadpole conditions the potential has at best a phase/singularities:
• We must work with non-zero but small Goldstone boson masses (in Landau

gauge).
• We also get a “Higgs boson catastrophe”:

2λv2 +
1

v

∂∆V

∂h
< 0→ (m2

h)
tree < 0!

This can even appear in other gauge choices!!
• Allows us/forces us to use the generic results of [Martin, 2003] which did not

allow for infra-red divergences.

If we work with “consistent tadpole equations”:
• Exactly massless Goldstones, need to properly regularise the infra-red

divergences.
• Work with smallm2

G and expand→ can use existing results in gaugeless limit
• New work: Use dimensional regularisation to handle IR divergences! Need

to recompute the results for these cases to extract the 1
εIR

+ finite pieces. This
is the approach that we will take in future!



Gaugeless vs gauged diagrams

The second place it rears its head is in diagrams regulated by momenta.

• If we work in the gaugeless limit, or a theory with genuine Goldstone bosons, we
have genuine IR singularities, recall:

Π ∼ λ2v2

∫
ddq

(q2 −m2
G)((q+ p)2 −m2

G

∝ (logp2 − 2)

• −→ use “Generalised effective potential” or full momentum dependence
• If we add gauge couplings, these should cancel out:

S

S

G

G

+
S

S

U

U

+
S

S

G

V

+
S

S

V

V

• −→ can use dimensional regularisation to take care of 1/εIR poles, or
momentum dependence.



Summary

  

“Martin” tadpoles

“Kniehl et al” tadpoles Tadpole counterterms

Resummation

On-shell 
Goldstone

“Consistent” tadpoles

(1-loop)2 shifts to 
tadpoles and self-
energies 

Broken tree-level 
relations among 
couplings



Calculating the full generic two-loop result
To go away from the gaugeless limit we need the full self-energies/tadpoles.

There are 9 irreducible self-energy topologies:

T1 T2 T3

T4 T5 T6

T7 T8 T9

1 → 1

Topologies 2 and 3 are equal for real scalar self-energies.



Renormalising the result
• The typical approach to renormalisation in explicit models is to compute

unrenormalised diagrams, counterterms, and insertions separately: we add
topologies

• This would mean giving the result only in terms of unrenormalised loop integrals,
or the ε0 pieces, and also just giving the result of these diagrams: the user
would have to compute the counterterms for each model.

• This is simple, but inefficient: there are also many cancellations between these
diagrams and the genuine two-loop integrals, in particular terms of the form

1

ε

∫
ddq

1

q2 −m2
1

1

(q− p)2 −m2
2

• Indeed it is known that the O(ε) pieces of the subdivergences cancel out in the
loop integrals when we use the basis of functions available in TSIL.



BPHZ method

Instead we use the BPHZ method of renormalising, where we
subtract off the subdivergences:

Selected sub-loop Diagram with counterterm Counterterm

1 2

3

4

5

6

1 2

6

3

2

-3

6

45

1 2

3

4

5

6 1 2

5 1

2

-5

5

3

46

1 2

3

4

5

6 1 2

4 1

2

-4

4

3

56

The forest formula ensures that this is equivalent.



Classes level

Next we need to populate the topologies with fields and evaluate them. For this we
need generic vertices; a generic QFT looks like

L = LS +LSF +LSV +LFV +Lgauge +LSghost .

where

LS ≡ −
1

6
aijkΦiΦjΦk −

1

24
λijklΦiΦjΦkΦl ,

LSF ≡ −
1

2
yIJkψIψJΦk −

1

2
yIJkψ

I
ψ
J
Φk ,

LFV ≡ gaJI A
a
µψ

I
σµψJ ,

LSV ≡
1

2
gabiAaµA

µbΦi +
1

4
gabijAaµA

µbΦiΦj + g
aijAaµΦi ∂

µΦj ,

Lgauge ≡ gabcAaµAbν ∂µAνc −
1

4
gabe gcdeAµaAνbAcµA

d
ν + gabcAaµω

b ∂µωc ,

LSghost ≡ ξ ĝabiΦiωaωb .

This is in terms of real scalars and vectors, Weyl fermions, and ghosts.
Actually for the computer algebra we shall use four-component Majorana fermions.



Brute force
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Evaluating

• Generate the amplitudes with FeynArts

• Evaluate the two-loop amplitudes in general gauge using TwoCalc. Gives
results in terms of scalar integrals and tensors

Y
j1···jo
i1···in =

∫
ddq1 ddq2[

ıπ2 (2πµ)d−4
]2

k2
j1
· · ·k2

jo(
k2
i1

− m2
i1

)
· · ·
(
k2
in

− m2
in

)
• We perform the BPHZ renormalisation in MS ′ and DR ′ schemes using our own

code to calculate counterterms and match them into the insertions, and
FormCalc, OneCalc to evaluate the insertion diagrams.

• We keep the result in an unexpanded form because the integral reduction differs
depending on whether there are IR singularities/special values of the
momenta/degenerate masses

• We have derived all the necessary integral reductions, either from in TwoCalc,
by TARCER, or in many cases by hand, to reduce to a basis of integrals that can
be evaluated in TSIL.



Gauge choice

We shall give the results explicitly in Feynman gauge:
• Not because of the GBC (this still exists for theories with genuine Goldstone

bosons!)
• Nor reducing number of diagrams (Landau gauge has fewer classes)
• Because the expressions are much shorter: in particular

S(i1) S(i2)

V(i3) V(i4)

V(i5)

V(i6) V(i7)

Gauge Integrals
Feynman 6
Landau 896
Rξ 924

However, we have the expressions for Landau/general gauge, which we will be able to
use later to demonstrate gauge independence.



Simplifying
• Initially we have 121 self-energy (and 25 tadpole) diagrams.
• We can trivially reduce the number of self-energies to 92 from relating topologies

2 and 3 and also exchanges not identified by FeynArts:

S(i1) S(i2)

S(i3) U(i4)

U(i5)

V(i6) U(i7)

=
S(i1) S(i2)

U(i3) S(i4)

U(i5)

U(i6) V(i7)

• We can further reduce this to 58 classes! First we do this by exchanging quartic
vector couplings for products of triple vector couplings:

i
∂4L

∂Aµa∂Aµb∂Aµc∂Aµd
=− 2igabegcdeηµaµbηµcµd

− 2igacegbdeηµaµcηµbµd − 2igadegcbeηµaµdηµcµd

S(i1) S(i2)

V(i3)

V(i4)

V(i5)

V(i6)

−→
S(i1) S(i2)

V(i3) V(i4)

V(i5)

V(i6) V(i7)



Ghost busting
The ghost-ghost-vector couplings are trivially given by gabc, but the scalar-ghost-ghost
couplings are more subtle:

ĝabi =
1

2
gabi −

1

2
gabc (FD)ci

where

(FD)aj =

 0 , a > NG
0 , j > NG

ma δaj , a, j 6NG

i.e. it depends on whether the scalar is a Goldstone or not!
But with some care we can bust all of the ghosts, e.g.

S(i1) S(i2)

S(i3) U(i4)

U(i5)

S(i6) U(i7)

−→
S(i1) S(i2)

S(i3) V(i4)

V(i5)

S(i6) V(i7)

+
S(i1) S(i2)

V(i3) V(i4)

V(i5)

V(i6) V(i7)



Special cases

We find two amusing special cases which can either be left unreduced or lead to a
non-1PI-irreducible topology:

S(i1) S(i2)

S(i3)

V(i4)

S(i5)

V(i6)

−→
S(i1) S(i2)

S(i3)

V(i4)

S(i7)

S(i5)

V(i6)

+ ...

or one with an “internal” propagator:

S(i1) S(i2)

U(i3)

U(i4)

S(i5) S(i6)
−→

V(i4)

V(i6)V(i5)

V(i3)

S(i7)

S(i1) S(i2)

+ ...



Remaining classes
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Conclusions

Now have a complete generic two-loop calculation for scalar self energies, available as
a package TLDR at

http://tldr.hepforge.org

But this is just the start:
• Needs to be implemented in code(s), in particular SARAH, and models, in

particular the THDM and (N)MSSM.
• Will be useful for charged/coloured scalars, not just the Higgs/heavy neutral

scalars.
• Can eliminate all Goldstone bosons from the calculation, sum with reducible

diagrams to get an explicitly gauge-invariant result
• Same technology can easily produce vector and fermion self-energies.
• Can apply these to fixed-order or EFT calculation (through pole-matching).
• Essential part of calculation of Higgs decays, ...
• Longer term: also four-fermi interaction at zero momentum for muon decays ...

http://tldr.hepforge.org

