Higgs pair production: EFT and BSM

Eleni Vryonidou CERN Theory Department

European Commission

KIT-NEP Workshop 08/10/2019 Karlsruhe

Outline

- HH overview
- SMEFT for HH
- HH resonances

Higgs pair production

Overview of HH in the SM

Gluon fusion cross-section

\sqrt{s}	$13 { m TeV}$	14 TeV	Borowka et al 1604.06447, 1608.04798
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	
$\rm NLO_{FTapprox}$ [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	
NNLO _{FTapprox} [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	200000

▲ Born-reweighted loops: $\mathcal{R}(ij \to HH + X) = \frac{\mathcal{A}_{\text{Full}}^{\text{Born}}(ij \to HH + X)}{\mathcal{A}_{\text{HEFT}}^{(0)}(ij \to HH + X)}$

Exact double real emission: HH+2 jets

M. Grazzini et al. arXiv:1803.02463

See Gudrun's and Seraina's talk for more on the SM cross-section

BSM in HH

HH: a Beyond the SM physics window

Specific models: Additional particles Resonances, loop contributions Model independent: EFT: Higher dimensional operators

- Non SM Yukawa couplings (1205.5444, 1206.6663)
 Resonances from extra dimensions (1303.6636)
- Vector-like quarks (1009.4670, 1206.6663, 1703.10614)
- Light coloured scalars (1207.4496,1504.05596)
- Dimension-6 operators (hep-ph/0609049, 1410.3471, 1502.00539, 1504.06577, 1205.5444, 1704.05700, 1705.05314)
- Higgs Singlet Model (1508.05397)
- •2HDM (1403.1264, 1407.0281,1909.09987)

I. SMEFT for HH

SMEFT

New Interactions of SM particles

$$\mathcal{L}_{\text{Eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(6)} O_i^{(6)}}{\Lambda^2} + \mathcal{O}(\Lambda^{-4})$$

Buchmuller, Wyler Nucl.Phys. B268 (1986) 621-653 Grzadkowski et al arxiv:1008.4884

	X^3		φ^6 and $\varphi^4 D^2$	$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
	$X^2 \varphi^2$		$\psi^2 X \varphi$	$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{\tau})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu u}W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p \gamma_\mu l_r) (ar{e}_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p\gamma_\mu\tau^I q_r)(\bar{q}_s\gamma^\mu\tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$	
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-viol	lating		
Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(q_s^{\gamma j})^T C l_t^k\right]$			
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha j})^TCq_r^{etak} ight]\left[(u_s^{\gamma})^TCe_t ight]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$			
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^{I}\varepsilon)_{jk}(\tau^{I}\varepsilon)_{mn}\left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n}\right]$			
$Q_{lequ}^{(3)}$	$(\bar{l}^{j}_{p}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}^{k}_{s}\sigma^{\mu\nu}u_{t})$	Q_{duu}	$\varepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight.$	Cu_r^{β}	$\left[(u_s^{\gamma})^T C e_t\right]$	

E.Vryonidou

SMEFT assumptions

- No light new physics ($E < \Lambda$)
- Expansion in 1/Λ²: dimension-6 effects are expected to be dominant over dimension-8 effects etc
- Respects the symmetries of the SM: Higgs is an SU(2) doublet (c.f. EWchL where H is a singlet: see Gudrun's talk)

Which operators enter in HH?

Constraints

$$O_{t\phi} = y_t^3 \left(\phi^{\dagger}\phi\right) \left(\bar{Q}t\right) \tilde{\phi},$$

$$D_{\phi G} = y_t^2 \left(\phi^{\dagger}\phi\right) G_{\mu\nu}^A G^{A\mu\nu},$$

$$D_{tG} = y_t g_s (\bar{Q}\sigma^{\mu\nu}T^A t) \tilde{\phi} G_{\mu\nu}^A \qquad \text{Inclusive H, Higgs}$$

$$D_{tG} = y_t g_s (\bar{Q}\sigma^{\mu\nu}T^A t) \tilde{\phi} G_{\mu\nu}^A \qquad \text{It, ttH, ttV}....$$

$$O_6 = -\lambda (\phi^{\dagger}\phi)^3 \qquad \text{HH (single Higgs@NLO)}$$

$$O_H = \frac{1}{2} (\partial_{\mu} (\phi^{\dagger}\phi))^2 \qquad \text{All Higgs couplings}$$

$$H \, decays, VH, VBF...$$

All but one operator will receive constraints from another processes (at LO)

KIT-NEP Workshop

SMEFT in HH

SMEFT in HH

c.f. in EWchL (Buchalla et al arXiv:1806.05162) c_{gghh} - c_{ggh} and c_t - c_{tt} are independent, with c_{gghh} , c_{tt} and c_{hhh} to be determined by HH

E.Vryonidou

KIT-NEP Workshop

How to extract λ_{HHH} from HH?

Other couplings enter in the same process:

top Yukawa, ggh(h) coupling, topgluon interaction

How to extract λ_{HHH} from HH?

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q}t \right) \tilde{\phi} \,, \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G_{\mu\nu}^A G^{A\mu\nu} \,, \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G_{\mu\nu}^A \,, \\ O_6 &= -\lambda (\phi^{\dagger} \phi)^3 \,, \\ O_H &= \frac{1}{2} (\partial_{\mu} (\phi^{\dagger} \phi))^2 \,, \end{split}$$

Other couplings enter in the same process:

top Yukawa, ggh(h) coupling, topgluon interaction

The present

Given the current constraints on $\sigma(HH)$, $\sigma(H)$ and the fresh ttH measurement, the Higgs selfcoupling can be currently constrained "ignoring" other couplings

E.Vryonidou

How to extract λ_{HHH} from HH?

The present

Given the current constraints on $\sigma(HH)$, $\sigma(H)$ and the fresh ttH measurement, the Higgs selfcoupling can be currently constrained "ignoring" other couplings

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q}t \right) \tilde{\phi} \,, \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G_{\mu\nu}^A G^{A\mu\nu} \,, \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G_{\mu\nu}^A \,, \\ O_6 &= -\lambda (\phi^{\dagger} \phi)^3 \,, \\ O_H &= \frac{1}{2} (\partial_{\mu} (\phi^{\dagger} \phi))^2 \,, \end{split}$$

Other couplings enter in the same process:

top Yukawa, ggh(h) coupling, top-

gluon interaction

The future

Precise knowledge of other Wilson coefficients will be needed to bound λ as the bound gets closer to SM Differential distributions will also be necessary

E.Vryonidou

SMEFT strategy

- Need for SMEFT global analysis including all relevant operators
- Ignoring operators is against the model independent nature of the SMEFT
- Other operators (4/5) will receive constraints from other processes, which can and should be taken into account in a SMEFT analysis of HH

SMEFT in Monte Carlo

SMEFT@NLO:

Based on:

- Warsaw basis
- Degrees of freedom for top operators as in dim6top

Current status:

- 73 degrees of freedom (top, Higgs, gauge):
 - CP-conserving
 - Flavour assumption: $U(2)Q \times U(2)U \times U(3)d \times U(3)L \times U(3)e$
- Successful validation at LO with dim6top (in turn validated with SMEFTsim)
- 0/2F@NLO operators validated (with previous partial NLO implementations) http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO

Future plans

- Full NLO model release (4F@NLO)
- Other flavour assumptions
- CP-violating effects

Work in progress with:

C. Degrande, G. Durieux, F. Maltoni, K. Mimasu, C. Zhang

Results

II. HH resonances

Parameter space for models with extra scalars

In models with extra scalars:

- Parameters of interest for HH:
 - Light and Heavy Higgs Yukawas
 - Trilinear Hhh coupling
 - Trilinear hhh coupling

For a pronounced resonance:

- + Enhanced Heavy Higgs top Yukawa
- + Large trilinear Hhh coupling
- + Relatively Low Mass Heavy Higgs

Is going beyond the NWA approximation needed?

Are heavy Higgs couplings strongly constrained by light Higgs measurements?

h light CP even H heavy CP even A CP odd H⁺ H⁻ charged

Type-I and Type-II setups 2HDM input: tanβ, sinα, m_h, m_H, m_A, m_{H+}, m₁₂²

h light CP even H heavy CP even A CP odd H⁺ H⁻ charged

Type-I and Type-II setups 2HDM input: tanβ, sinα, m_h, m_H, m_A, m_{H+}, m₁₂²

hh hH HH hA HA AA H+H-

h light CP even H heavy CP even A CP odd H⁺ H⁻ charged

Type-I and Type-II setups 2HDM input: tanβ, sinα, m_h, m_H, m_A, m_{H+}, m₁₂²

hh hH HH hA HA AA H+H-

Topologies:

h light CP even H heavy CP even A CP odd H⁺ H⁻ charged

Type-I and Type-II setups 2HDM input: tanβ, sinα, m_h, m_H, m_A, m_{H+}, m₁₂²

hh hH HH hA HA AA H+H-

Topologies:

also tree-level qq for hA, HA, H+H-

Light Higgs pair production

Relevant couplings:Heavy quark Yukawas

$$g_{hxx} \equiv g_x^h = \left(1 + \Delta_x^h\right) g_x^{SM}$$

	Type I	Type II
$1 + \Delta_t^{\mathbf{h}^0}$	$\frac{\cos\alpha}{\sin\beta}$	$\frac{\cos\alpha}{\sin\beta}$
$1 + \Delta_b^{\mathbf{h}^0}$	$\frac{\cos\alpha}{\sin\beta}$	$-\frac{\sin \alpha}{\cos \beta}$
$1 + \Delta_t^{\mathrm{H}^0}$	$\frac{\sin\alpha}{\sin\beta}$	$\frac{\sin\alpha}{\sin\beta}$
$1 + \Delta_b^{\mathrm{H}^0}$	$\frac{\sin\alpha}{\sin\beta}$	$\frac{\cos\alpha}{\cos\beta}$

Trilinear Higgs couplings

$$\begin{split} \lambda_{\rm h^0h^0h^0} : & -\frac{3}{\sin 2\beta} \left| \frac{4\cos(\alpha+\beta)\cos^2(\beta-\alpha)m_{12}^2}{\sin 2\beta} - m_{\rm h^0}^2\left(2\cos(\alpha+\beta) + \sin 2\alpha\,\sin(\beta-\alpha)\right) \right| \\ \lambda_{\rm h^0h^0H^0} : & \frac{\cos(\beta-\alpha)}{\sin 2\beta} \left[\sin 2\alpha\,(2m_{\rm h^0}^2 + m_{\rm H^0}^2) - \frac{2m_{12}^2}{\sin 2\beta}(3\sin 2\alpha - \sin 2\beta) \right] \end{split}$$

E.Vryonidou

KIT-NEP Workshop

2HDM Benchmark selection

Constraints on the 2HDM parameter space:

Theoretical: Unitarity

Perturbativity Vacuum stability

• Experimental: Electroweak precision tests

LHC Higgs measurements

LHC searches for heavy neutral and charged Higgses

decoupling limit

$$\xi = \cos(\beta - \alpha) \ll 1$$

2HDM deviations still possible:

Non-resonant effects:

- enhanced, suppressed or sign-flipped Yukawa couplings
- modified trilinear Higgs couplings

Resonant effects:

on-shell production of moderately heavy states

Constraints by interfacing public tools: 2HDMC, HIGGSBOUNDS, SUPERISO, HIGGSSIGNALS

E.Vryonidou

enhancement/suppression/ interference patterns

Resonant 2HDM scenario: Heavy H

 σ_{hh} ~ 4 times the SM prediction

Hespel, Lopez-Val, EV arXiv:1407.0281

2HDM input: Type-II

	$\tan\beta$	$lpha/\pi$	$m_{ m H^0}$	$m_{ m A^0}$	$m_{\mathrm{H}^{\pm}}$	m_{12}^2
B2	1.50	-0.2162	700	701	670	180000

- Slightly reduced top Yukawa
- 40% reduction of the hhh coupling
- Enhanced Hhh coupling
- Significant resonant enhancement from H→hh now at 700 GeV
- Distinctive resonance peak
- Interference patterns before and after the peak, need to go beyond the NWA

E.Vryonidou

Resonant 2HDM scenario: Heavy H

 σ_{hh} ~ 4 times the SM prediction

Hespel, Lopez-Val, EV arXiv:1407.0281

2HDM input: Type-II

	$\tan\beta$	$lpha/\pi$	$m_{ m H^0}$	$m_{ m A^0}$	$m_{\mathrm{H}^{\pm}}$	m_{12}^2
B2	1.50	-0.2162	700	701	670	180000

- + Slightly reduced top Yukawa
- 40% reduction of the hhh coupling
- Enhanced Hhh coupling
- Significant resonant enhancement from H→hh now at 700 GeV
- Distinctive resonance peak
- Interference patterns before and after the peak, need to go beyond the NWA

E.Vryonidou

Non-resonant 2HDM scenario

2HDM input: Type-I

	$\tan\beta$	$lpha/\pi$	m_{H^0}	m_{A^0}	$m_{\mathrm{H}^{\pm}}$	m_{12}^2
Β4	1.20	-0.1760	200	500	500	-60000

- Slightly enhanced top Yukawa
 Enhaced hhh coupling
 Enhanced Hhh coupling
- Heavy Higgs mass below the hh threshold: No resonant enhancement
- Interference between different
 contributions leads to a different
 shape compared to the SM
- Important to study the distributions, not just total rates

KIT-NEP Workshop

Non-resonant 2HDM scenario

2HDM input: Type-I

	aneta	$lpha/\pi$	m_{H^0}	m_{A^0}	$m_{\mathrm{H}^{\pm}}$	m_{12}^2
Β4	1.20	-0.1760	200	500	500	-60000

- Slightly enhanced top Yukawa Enhaced hhh coupling Enhanced Hhh coupling
- Heavy Higgs mass below the hh threshold: No resonant enhancement
- Interference between different contributions leads to a different shape compared to the SM
- Important to study the distributions, not just total rates

HH in the Higgs singlet model (1)

Interesting interference patterns: Peak-dip structures

KIT-NEP Workshop

HH in the Higgs singlet model (2)

Interference responsible for peak-dip structures-Relative contribution depends on the heavy scalar mass

Dawson and Lewis arXiv:1508.05397

Interference also important at the total cross-section level, for low (below 2M_H) and large H masses

E.Vryonidou

C2HDM: CP-violating 2HDM

Basler, Dawson, Englert, Mühlleitner arXiv:1909.09987

Comparison with top pair production:

- Interference is much more severe in tt
- Dip-like structure in tops
- Breit-Wigner enhancement in HH
 Viable scenarios evading LHC constraints exist

When is the interference important? Is Γ/m a good criterion? g voo 0000 Toy Example g 0000 $L \supset \frac{\alpha_s}{12\pi v} c_H H G^a_{\mu\nu} G^{a,\mu\nu}$ $\eta = \int_{m_{\varphi}-10\Gamma_{\varphi}}^{m_{\varphi}+10\Gamma_{\varphi}} dm_F \left(\frac{d\sigma_S}{dm_F} + \frac{d\sigma_I}{dm_F}\right) \bigg/ \int_{m_{\varphi}-10\Gamma_{\varphi}}^{m_{\varphi}+10\Gamma_{\varphi}} dm_F \left(\frac{d\sigma_S}{dm_F}\right)$ $gg(\rightarrow H) \rightarrow hh$ 10^{3} 10^{2} $\sigma_{sig}/\sigma_{back}$ can be a better 10^{1} alternative 10^{0} 10^{-1} Interference can be sizeable 10^{-2} and should be taken into 10^{-3} account even for large $\sigma_{sig}/\sigma_{back}$ |1| > 10% 10^{-3} 10^{-2} 10^{-1} 10^{-4} Γ_H/M_H

LesHouches proceedings: A. Carvalho et al arXiv:1803.10379

E.Vryonidou

KIT-NEP Workshop

Conclusions-Outlook

- Higgs pair production is a challenging process but also a path to explore beyond the SM physics
- BSM possibilities include models with new states and models with new interactions (EFT)
- New interactions can modify both the rate and distributions
- Models with HH resonances can lead to large deviations from the SM predictions: 1HSM, 2HDM, C2HDM etc
- Studies exploring interference effects are available
- With the increased sensitivity of the experimental analyses, going beyond the NWA becomes necessary

Thanks for your attention...