



Mathematisch-Naturwissenschaftliche Fakultät Institut f. Theoretische Physik



### **Parton-Shower Effects in Electroweak** *W*+*Zjj***-Production at NLO QCD** KIT-NEP '19 · Karlsruhe

09.10.2019, Johannes Scheller\*

\*In cooperation with Barbara Jäger and Alexander Karlberg; Eur. Phys. J. C (2019) 79: 226





# Outline

- Vector Boson Scattering
- Process Definition
- Overview of Related Work
- Implementation and Setup
- Phenomenology
- Outlook: Options for BSM Physics



#### **Vector Boson Scattering**

- EW process of the form  $pp \rightarrow VVjj$  or  $pp \rightarrow HHjj$  in *t* and *u*-channel
- containing VVV, VVVV and VVH vertices
- offers insights into the gauge structure and the symmetry breaking of the EW sector of the SM
- experimentally: distinct signature ⇒ relatively good signal/background ratio with appropriate cuts



# **Process Definition: VBS** $W^+Z$

- include decays (here: fully leptonic)  $\rightarrow \mathcal{O}(\alpha^6)$
- $\Rightarrow pp \rightarrow \mu^+\mu^- e^+ \nu_e jj$ 
  - *t* and *u*-channel contributions, but no interference of *t* with *u*-channel diagrams; no *s*-channel induced production modes



Colored diagrams taken from [Pellen, 2018], original source by [Pelliccioli]



# **Related Work**

- NLO-QCD included in multi-purpose Monte Carlo program VBFNLO, publication from 2007 [Baglio et al.; Arnold et al. '08-'14]
- similar POWHEG-BOX implementations for W<sup>+</sup>W<sup>+</sup>jj, W<sup>+</sup>W<sup>-</sup>jj and ZZjj [Jäger et al., 2011-2013]
- 13 TeV results from ATLAS [ATLAS-CONF-2018-033] and CMS [CMS-PAS-SMP-18-001] in 2018
- Les Houches comparison of various LO and LO+PS implementations in 2017 [Bendavid, Long et al., 2017]
- full NLO QCD and EW corrections published in 2019 [Denner, Dittmaier et al., 2019]



### **Setup and Implementation**

• generation cuts on photon virtuality in t-channel,  $Q_{min}^2 = 4 \text{ GeV}^2$  and on mass of same-type lepton pair,  $m_{\mu^+\mu^-} > 0.5 \text{ GeV}$ 



- Born-suppression factor  $F(\Phi_N) = \left(\frac{p_{T,1}^2}{p_{T,1}^2 + \Lambda^2}\right)^2 \left(\frac{p_{T,2}^2}{p_{T,2}^2 + \Lambda^2}\right)^2$
- parton shower programs: PYTHIA6, PYTHIA8 (dipolé & default recoil), HERWIG7
- analysis cut set inspired by CMS analysis (paper: also ATLAS-inspired cut set, less tight)



# Cuts inspired by CMS (tight cuts)

- min. 2 jets with:  $p_{T,j} > 50 \text{ GeV}, |y_j| < 4.7$
- $m_{j_1 j_2} > 150 \text{ GeV}$ ,  $|\Delta y_{j_1, j_2}| = |y_{j_1} - y_{j_2}| > 2.5$
- $\bullet \ \Delta R_{\ell\ell} > 0.2 \,, \quad \Delta R_{j\ell} > 0.4$
- $p_{T,\mu_1} > 25 \text{ GeV}, \, p_{T,\mu_2} > 15 \text{ GeV}$
- $p_{T,e} > 20 \text{ GeV}, p_T^{\text{miss}} > 30 \text{ GeV}$
- $|\eta_{\mu}| < 2.4 \ , \ |\eta_{e}| < 2.4$
- $m_{\mu^+\mu^-} > 4 \; {
  m GeV} \, , \ m_{e^+\mu^+\mu^-} > 10 \; {
  m GeV}$
- $|\eta_{3\ell} \frac{\eta_{j_1} \eta_{j_2}}{2}| < 2.5$



# Leptons And Tagging Jets I





# Leptons And Tagging Jets II



Results with cut set inspired by CMS analysis

 $\rightarrow$  barely affected by parton shower



#### **Additional Jets**



Results with cut set inspired by CMS analysis

 $\rightarrow$  less stable results, effects relevant for veto techniques



#### **Zeppenfeld Variable**





[Bendavid et al., 2017]



#### **Zeppenfeld Variable**

 $Z_{j_3} = \frac{y_{j_3} - \frac{y_{j_1} + y_{j_2}}{2}}{\left| \Delta y_{j_1, j_2} \right|}$ 



 $10^{0}$ 

 $d \sigma/d z_{j_3}$  [fb]

Results with cut set inspired by CMS analysis

 $\rightarrow$  improvements in central rapidity region



### **MPI And Hadronization**





#### **Outlook: Anomalous Couplings**

- VBS very sensitive to BSM physics in the EW sector
- easily accessible in framework of anomalous gauge couplings  $\Rightarrow$  can be implemented in POWHEG-BOX code
- also suitable for various other ways of implementing new physics in EW sector



#### Conclusion

- first public NLO+PS implementation of VBS-W<sup>+</sup>Z available at svn://powhegbox.mib.infn.it/trunk/User-Processes-V2/ VBF\_WZ
- results very stable for leptons and tagging jets
- significant parton shower effects on 3rd jet distributions remains
- strong improvement compared to LO+PS
- important for jet veto
- confirmed by results within ATLAS cut set
- possibility to include anomalous couplings in future



# Questions?

Contact:

Johannes Scheller Institut f. Theoretische Physik Auf der Morgenstelle 14 72076 Tübingen +49 7071 29-78639 johannes.scheller@uni-tuebingen.de



#### **Backup: Subprocesses/Topologies**





# **Backup: POWHEG**

- uses FKS substraction method
- input needed
  - phase space parametrization
  - definition of flavour structures
  - Born, virtual & real matrix elements squared
  - color & spin correlated Born amplitudes
  - color information about the Born process
- POWHEG master formula:

 $\sigma = \int \mathrm{d}\Phi_{n}\tilde{\mathcal{B}}_{n}\Delta\left(\boldsymbol{p}_{T}^{\min}\right) + \int \mathrm{d}\Phi_{n+1}\tilde{\mathcal{B}}_{n}\Delta\left(\boldsymbol{p}_{T}^{\min}\right)\frac{\mathcal{R}_{n+1}}{\mathcal{B}_{n}}\Theta\left(\boldsymbol{p}_{T}^{n}-\boldsymbol{p}_{T}^{n+1}\right)$ 



#### **Backup: ATLAS Cuts**

- min. 2 jets with:  $p_{T,j} > 40 \text{ GeV}, |y_j| < 4.5$
- *m*<sub>*j*<sub>1</sub>*j*<sub>2</sub> > 150 GeV</sub>
- $\begin{array}{l} \bullet \ |y_\ell| < 2.5\,, \\ \Delta R_{\ell\ell} > 0.2\,, \quad \Delta R_{j\ell} > 0.2 \end{array}$
- $|m_Z m_{\mu^+\mu^-}| < 10 \text{ GeV} \,, \ p_{T,\mu} > 15 \text{ GeV}$
- *p*<sub>*T,e*</sub> > 20 GeV



## **Backup: ATLAS I**





# **Backup: ATLAS II**





# **Backup: ATLAS III**





#### **Backup: ATLAS IV**







# **Backup: ATLAS V**



24 | J. Scheller | KIT-NEP '19