DM PAIR PRODUCTION IN SIMPLIFIED MODELS AND THE MSSM

Gabriele Coniglio based on Eur.Phys.J. C79 (2019) no.5, 428 [C. Borschensky, GC, B. Jäger]

KIT NEP '19 - Karlsruhe

09 October 2019

Outline

- Simplified dark matter models s-channel model t-channel model
- 3 Comparison of MSSM and simplified models

Summary

The dark matter model space

The dark matter model space

s-channel model

Assumption: DM is a singlet under SU(3)×SU(2)×U(1) and ...

- ... consists of Dirac/Majorana fermions χ sm
- ... interacts with the SM via the topology:

SM

s-channel model

Assumption: DM is a singlet under SU(3)×SU(2)×U(1) and ...

- ... consists of Dirac/Majorana fermions χ sm
- ... interacts with the SM via the topology:

Possible Lagrangians with a scalar or vector mediator:

$$\begin{split} \mathcal{L}_{S} &= g_{X}^{S}\bar{\chi}\chi S + \sum_{q} g_{q}^{S}\bar{q}qS \\ \mathcal{L}_{P} &= ig_{X}^{P}\bar{\chi}\gamma_{5}\chi P + \sum_{q} g_{q}^{P}\bar{q}\gamma_{5}qP \\ \mathcal{L}_{V} &= \bar{\chi}\gamma_{\mu} \left[g_{X}^{V} - g_{X}^{A}\gamma_{5} \right] \chi V^{\mu} + \sum_{q} \bar{q}\gamma_{\mu} \left[g_{q}^{V} - g_{q}^{A}\gamma_{5} \right] qV^{\mu} \end{split}$$

G. Coniglio: DM Pair Production in Simplified Models and the MSSM 4

DM

DM

SM

s-channel model

Assumption: DM is a singlet under SU(3)×SU(2)×U(1) and ...

- ... consists of Dirac/Majorana fermions χ sm
- ... interacts with the SM via the topology:

Possible Lagrangians with a sealar or vector mediator:

$$\mathcal{L}_{S} = g_{X}^{S} \bar{\chi} \chi S + \sum_{q} g_{q}^{S} \bar{q} q S$$
In this talk
$$\mathcal{L}_{P} = i g_{X}^{P} \bar{\chi} \gamma_{5} \chi P + \sum_{q} g_{q}^{P} \bar{q} \gamma_{5} q P$$

$$\rightarrow \mathcal{L}_{V} = \bar{\chi} \gamma_{\mu} \left[g_{X}^{V} - g_{X}^{A} \gamma_{5} \right] \chi V^{\mu} + \sum_{q} \bar{q} \gamma_{\mu} \left[g_{q}^{V} - g_{q}^{A} \gamma_{5} \right] q V^{\mu}$$

G. Coniglio: DM Pair Production in Simplified Models and the MSSM 4

DM

DM

s-channel model

Assumption: DM is a singlet under SU(3)×SU(2)×U(1) and ...

- ... consists of Dirac/Majorana fermions χ sм •
- ... interacts with the SM via the topology:

Interaction Lagrangian for a vector mediator [Dudas et al. '09]:

$$\mathcal{L}_{V} = \bar{\chi} \gamma_{\mu} \left[g_{\chi}^{V} - g_{\chi}^{A} \gamma_{5} \right] \chi V^{\mu} + \sum_{q} \bar{q} \gamma_{\mu} \left[g_{q}^{V} - g_{q}^{A} \gamma_{5} \right] q V^{\mu}$$

with q: quark fields, χ : DM field, V^{μ} : vector mediator field, g^{V} , g^{A} : vector and axialvector couplings

Properties

- V is uncoloured and massive (M_v)
- Added to SM by spontanenously broken U(1)' symmetry to generate V mass
- Decays only into SM or DM pairs

DM

Summary

t-channel model

Assumption: DM is a singlet under SU(3)×SU(2)×U(1) and ...

- ... consists of Dirac/Majorana fermions χ sm •
- ... interacts with the SM via the topology:

DM

t-channel model

Assumption: DM is a singlet under SU(3)×SU(2)×U(1) and ...

- ... consists of Dirac/Majorana fermions χ SM •
- ... interacts with the SM via the topology:

Interaction Lagrangian for a coloured scalar mediator:

$$\mathcal{L}_{\tilde{Q}} = - \left[\lambda_{Q_L} \bar{\chi} P_L \tilde{Q}_L^{\dagger} \cdot Q + \lambda_{u_R} \tilde{Q}_{u_R}^* \bar{\chi} P_R u + \lambda_{d_R} \tilde{Q}_{d_R}^* \bar{\chi} P_R d + \text{h.c.} \right]$$

with $\tilde{Q}_L = \begin{pmatrix} \tilde{Q}_{u_L} \\ \tilde{Q}_{d_L} \end{pmatrix}$ an SU(2)×U(1) doublet

DM 🖌

t-channel model

Assumption: DM is a singlet under SU(3)×SU(2)×U(1) and ...

- ... consists of Dirac/Majorana fermions χ sm •
- ... interacts with the SM via the topology:

Interaction Lagrangian for a coloured scalar mediator [An et al. '14]:

$$\begin{aligned} \mathcal{L}_{\tilde{Q}} &= - \left[\lambda_{Q_{L}} \left(\tilde{Q}_{u_{L}}^{*} \bar{\chi} P_{L} u + \tilde{Q}_{d_{L}}^{*} \bar{\chi} P_{L} d \right) \\ &+ \lambda_{u_{R}} \tilde{Q}_{u_{R}}^{*} \bar{\chi} P_{R} u + \lambda_{d_{R}} \tilde{Q}_{d_{R}}^{*} \bar{\chi} P_{R} d + \text{h.c.} \end{aligned} \end{aligned}$$

with *u*, *d*: up- and down-type quark fields, χ : DM field, $\tilde{Q}_{q_{L/R}}$: coloured scalar mediator fields, λ : DM-quark-squark Yukawa couplings, $P_{L/R}$: left- and right-handed chirality projectors

Properties

- \tilde{Q} are coloured and flavoured (#12)
- Heavier than χ so that the decay $\tilde{Q} \rightarrow q\chi$ is possible $(M_{\tilde{Q}} > m_{y})$

5

G. Coniglio: DM PAIR PRODUCTION IN SIMPLIFIED MODELS AND THE MSSM

Tools and numerical setup

Roadmap of the calculation:

 Generate points in MSSM parameter space Spectrum generator: SPheno 4.0.3 [Porod '03; Porod, Staub '12]

CMSSM [Adeel Ajaib, Gogoladze '17]	pMSSM10 [de Vries et al. '15]	
M ₀ ∈ [0, 10] TeV	M ₁ ∈ [-1, 1] TeV	M ₂ ∈ [0, 4] TeV
$m_{1/2} \in [0, 10]$ TeV	M ₃ ∈ [-4,4] TeV	m _{q̃1/2} ∈ [0, 4] TeV
$A_0 \in [-3,3] \times M_0$	m _{q̃3} ∈ [0,4] TeV	<i>m</i> į̃ ∈ [0,2] TeV
tanβ∈[2,60]	M _A ∈ [0, 4] TeV	A ∈ [-5, 5] TeV
sign	µ ∈ [-5, 5] TeV	tanβ∈[1,60]

5000 points where $\tilde{\chi}_1^0$ is the LSP and the lightest Higgs mass satisfies 124 GeV $\leq m_h \leq$ 126 GeV

- ► Fix parameters of s- and t-channel models Choose: $m_{\chi} = m_{\tilde{\chi}_{1}^{0}}, M_{V} = 1$ TeV and 10 TeV, $M_{\tilde{Q}} = average$ of $\tilde{u}_{L/R}, \tilde{d}_{L/R}, \tilde{c}_{L/R}, \tilde{s}_{L/R}, \tilde{b}_{1/2}$ masses, $g_{\chi}^{V/A} = g_{q}^{V/A} = g = 0.5, \lambda_{Q_{L}} = \lambda_{u_{R}} = \lambda_{d_{R}} = \lambda = 1$
- ► Calculate $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$ cross section in MSSM for each point POWHEG-BOX [Alioli, Nason, Oleari, Re '10] with weakino code [Baglio, Jäger, Kesenheimer '16]
- ► Calculate $pp \rightarrow \chi\bar{\chi}$ cross section in SDMMs for each point POWHEG-BOX and for the t-channel model COLLIER-1.2 [Denner, Dittmaier, Hofer '17]

LHC at \sqrt{S} = 13 TeV, PDFs used: PDF4LHC15 NLO MC PDFs [Butterworth et al. '16]

G. Coniglio: DM Pair Production in Simplified Models and the MSSM

6

Parameter scan in the pMSSM10

[C. Borschensky, GC, B. Jäger; Eur.Phys.J. C79 (2019) no.5, 428]

$\tilde{\chi}^0_1$ composition

- Distinguish between b̃ino, w̃ino, h̃iggsino
- Pure bino/wino: no Z exchange possible

Parameter scan in the pMSSM10

Parameter scan in the pMSSM10

Motivation

Summary

Distributions: *w̃* point

Analysis at NLO + parton shower accuracy

- ▶ $\tilde{\chi}_1^0$ mainly \tilde{w} ino, DM mass ~ 220 GeV, squark masses ~ 3 TeV
- t-channel very close to MSSM, agreement with s-channel (M_V = 1 TeV) is worst

Motivation

Summary

Distributions: \tilde{b} point

Bump around $p_{T,yy} \approx 1.25$ TeV remnant of on-shell subtraction procedure

Motivation

Summary

Distributions: \tilde{w}/\tilde{h} point

Analysis at NLO + parton shower accuracy

- ▶ $\tilde{\chi}_1^0$ mainly \tilde{w} ino- \tilde{h} iggsino, DM mass ~ 180 GeV, squark masses ~ 3.4 TeV
- No agreement between simplified models and MSSM for M_{XX} and p_{T_{XX}} distributions

Summary and conclusions

Simplified models: studying DM with a minimal set of parameters

G. Coniglio: DM PAIR PRODUCTION IN SIMPLIFIED MODELS AND THE MSSM 11

Summary and conclusions

Simplified models: studying DM with a minimal set of parameters

Two specific models studied:

- s-channel model with a vector mediator, and t-channel model with coloured scalar mediators
- NLO QCD corrections including PS (PYTHIA 6) calculated for DM pair production at the LHC and implemented in the POWHEG-BOX framework

Summary and conclusions

Simplified models: studying DM with a minimal set of parameters

Two specific models studied:

- s-channel model with a vector mediator, and t-channel model with coloured scalar mediators
- NLO QCD corrections including PS (PYTHIA 6) calculated for DM pair production at the LHC and implemented in the POWHEG-BOX framework

Comparison with $\tilde{\chi}^0_1$ pair-production in the MSSM:

- Simplified models can reproduce some MSSM features, in particular the *t*-channel model with only three parameters $(m_{y}, M_{\tilde{O}}, \lambda)$
- However, poor agreement for our studied models in other regions
- Require more complex models, or simplified models better suited for description of some other non-SUSY theory?

Backup :NLO QCD corrections

G. Coniglio: DM PAIR PRODUCTION IN SIMPLIFIED MODELS AND THE MSSM 12

Backup :NLO QCD corrections

- ► Born, spin-/colour-correlated Born, and real amplitudes calculated with MadGraph 4 [Murayama et al., Stelzer et al., Alwall et al. '92-'07]
- Virtual amplitudes calculated with FeynArts 3.9/FormCalc 9.4 [Hahn et al. '98-'16]

G. Coniglio: DM PAIR PRODUCTION IN SIMPLIFIED MODELS AND THE MSSM

12

Subtlety in real corrections: intermediate \tilde{Q} becomes on-shell

On-shell subtraction (follow mainly [Baglio, Jäger, Kesenheimer '16-'17])

- ► Split up amplitude into non-resonant (nr) and possibly resonant (r) diagrams: $|\mathcal{M}_{real}|^2 = |\mathcal{M}_{rr}|^2 + 2 \operatorname{Re}(\mathcal{M}_{rr}\mathcal{M}_r^*) + |\mathcal{M}_r|^2$
- Construct local (i.e. for each phase space point) counterterm

CT
$$\propto$$
 BW $\times |\mathcal{M}_{r}^{OS}|^{2}$

with \mathcal{M}_r^{OS} mapped to on-shell kinematics $p^2 = M_{\tilde{Q}}^2$, and where BW is a Breit-Wigner factor shaping the resonant propagator

Subtlety in real corrections: intermediate \tilde{Q} becomes on-shell

Backup: Parameter scan in the CMSSM

G. Coniglio: DM PAIR PRODUCTION IN SIMPLIFIED MODELS AND THE MSSM

14

Backup: Parameter scan in the CMSSM

[GC, C. Borshensky, B. Jägerr; 1812.08704]

G. Coniglio: DM PAIR PRODUCTION IN SIMPLIFIED MODELS AND THE MSSM 14

Motivation

Backup: Distributions: \tilde{h}/\tilde{b} point

Analysis at NLO + parton shower accuracy

- $\blacktriangleright~\tilde{\chi}^0_1$ mainly \tilde{h} iggsino-mix, DM mass ~ 290 GeV, squark masses ~ 1.8 TeV
- No agreement between simplified models and MSSM for M_{χχ} distribution
- Good agreement with s-channel (M_V = 1 TeV) for $p_{T,xx}$ distribution

