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The Kappa Framework

From arXiv: 1711.09875

• The k-framework has some limitations:


• Mixed linear and quadratic terms (interpretation…) 


• It doesn’t accommodate “new kinematics”


• It’s inconsistent beyond LO



The SMEFT Framework

To summarize the strategy that will be described in this work we identify the following steps: start with EFT at a given
order (here dim = 6 and NLO) and write any amplitude as a sum of κ -deformed SM sub-amplitudes (e.g. t,b and
bosonic loops in H→ γγ). Another sum of κ -deformed non-SM amplitudes is needed to complete the answer; at this
point we can show that the κ -parameters are linear combinations of Wilson coefficients.

The rationale for this course of action is better understood in terms of a comparison between LEP and LHC. Physics
is symmetry plus dynamics and symmetry is quintessential (gauge invariance etc.); however, symmetry without dy-
namics does not bring us this far. At LEP dynamics was the SM, unknowns were MH (αs(MZ), . . . ); at LHC (post
the discovery) unknowns are SM-deviations, dynamics? Specific BSM models are a choice but one would like to try
also a model-independent approach. Instead of inventing unknown form factors we propose a decomposition where
dynamics is controlled by dim= 4 amplitudes (with known analytical properties) and deviations (with a direct link to
UV completion) are (constant) combinations of Wilson coefficients. Only the comparison with experimental data will
allow us to judge the goodness of a proposal that, for us, is based on the belief that deviations need a SM basis.

On-shell studies at LHC will tell us a lot, off-shell ones will tell us (hopefully) much more [39–43]. If we run away
from the H peak with a SM-deformed theory, up to some reasonable value s≪ Λ2, we need to reproduce (deformed)
SM low-energy effects, e.g. VV and tt thresholds. The BSM loops will remain unresolved (as SM loops are unresolved
in the Fermi theory). That is why we need to expand the SM-deformations into a SM basis with the correct (low energy)
behavior. If we stay in the neighbourhood of the peak any function will work, if we run away we have to know more
of the analytical properties.

The outline of the paper is as follows: in Section 2 we introduce the EFT Lagrangian. In Section 3 we describe the
various aspects of the calculation; in Section 4 we present details of the renormalization procedure, decays of the
Higgs boson are described in Section 5, EW precision data in Section 6. Technical details, as well as the complete list
of counterterms and amplitudes are given in several appendices.

2 The Lagrangian

In this Section we collect all definitions that are needed to write the Lagrangian defined by

LEFT = L4+∑
n>4

Nn
∑
i=1

ani
Λn−4

O
(d=n)
i , (1)

whereL4 is the SM Lagrangian [44] and ani are arbitrary Wilson coefficients. Our EFT is defined by Eq.(1) and it is
based on a number of assumptions: there is only one Higgs doublet (flexible), a linear realization is used (flexible),
there are no new “light” d.o.f. and decoupling is assumed (rigid), the UV completion is weakly-coupled and renormal-
izable (flexible). Furthermore, neglecting dim= 8 operators and NNLO EW corrections implies the following range
of applicability: 3 TeV < Λ< 5 TeV .

We can anticipate the strategy by saying that we are at the border of two HEP phases. A “predictive” phase: in
any (strictly) renormalizable theory with n parameters one needs to match n data points, the (n+ 1)th calculation
is a prediction, e.g. as doable in the SM. A “fitting” (approximate predictive) phase: there are (N6+N8+ · · · = ∞)
renormalizedWilson coefficients that have to be fitted, e.g. measuring SM deformations due to a single O(6) insertion
(N6 is enough for per mille accuracy).

2.1 Conventions

We begin by considering the field-content of the Lagrangian. The scalar field Φ (with hypercharge 1/2) is defined by

Φ =
1√
2

(

H+ 2 Mg + iφ0√
2 iφ−

)

(2)
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• Some assumptions 

• Renormalizability ?



Definition The Higgs couplings can be extracted from Green’s functions in 
well-defined kinematic limits, e.g. residue of the poles after extracting the 
parts which are 1P reducible. These are well-defined QFT objects, that we 
can  probe  both  in  production  and  in  decays;  from this  perspective,  VH 
production or vector-boson-fusion are on equal footing with gg fusion and 
Higgs  decays.  Therefore,  the  first  step  requires  computing  these  residues 
which is the main result of this paper. 



NLO-EFT #0 : Tadpoles

for Green functions: given a one-loop Green function with N external lines carrying Lorentz indices µ j, j = 1, . . . ,N,
we introduce form factors,

Sµ1 ... µN =
A

∑
a=1

SaKa
µ1 ... µN . (42)

Here the set Ka, with a = 1, . . . ,A, contains independent tensor structures made up of external momenta, Kronecker-
delta functions, elements of the Clifford algebra and Levi-Civita tensors. A large fraction of the form factors drops
from the final answer when we make approximations, e.g. vector bosons couple only to conserved currents etc.
Requiring that all (off-shell) form factors (including external unphysical lines) are made UV finite by means of local
counterterms implies working in the Rξξ -gauge, as shown (up to two loops in the SM) in Ref. [75].

A full generality is beyond the scope of this paper, we will limit ourselves to the usual ’t Hooft-Feynman gauge and to
those Green functions that are relevant for the phenomenological applications considered in this paper.

4.1 Tadpoles and transitions

We begin by considering the treatment of tadpoles: we fix β h, Eq.(21), such that ⟨0 |H|0⟩= 0 [45]. The solution is

β h = ig2M2
W

(

β
(4)
h + g6 β

(6)
h

)

, (43)

where we split according to the following equation (see Eq.(37))

β
(n)
h = β (n)

−1 ΔUV
(

M2
W

)

+β (n)
0 +β (n)

fin . (44)

The full result for the coefficients β (n) is given in Appendix A. The parameter Γ, defined in Eq.(14), is fixed by the
request that the Z−A transition is zero at p2 = 0; the corresponding expression is also reported in Appendix A.

4.2 H self-energy

The one-loop H self-energy is given by

SHH =
g2

16π2
ΣHH =

g2

16π2
(

Σ(4)HH+ g6 Σ
(6)
HH

)

. (45)

The bare H self-energy is decomposed as follows:

Σ(n)HH = Σ(n)HH;UVΔUV
(

M2
W

)

+Σ(n)HH;fin . (46)

Furthermore we introduce
Σ(n)HH ;fin(s) = Δ(n)

HH;fin(s)M
2
W+Π(n)

HH;fin(s)s . (47)

The full result for the H self-energy is given in Appendix B.

4.3 A self-energy

The one-loop A self-energy is given by

SµνAA =
g2

16π2
ΣµνAA , ΣµνAA =ΠAA Tµν , (48)

where the Lorentz structure is specified by the tensor

T µν =−sδ µν − pµ pν , (49)
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4 Renormalization

There are several steps in the renormalization procedure. The orthodox approach to renormalization uses the language
of “counterterms”. It is worth noting that this is not a mandatory step, since one could write directly renormalization
equations that connect the bare parameters of the Lagrangian to a set of data, skipping the introduction of intermediate
renormalized quantities and avoiding any unnecessary reference to a given renormalization scheme.

In this approach, carried on at one loop in [74], no special attention is paid to individual Green functions, and one is
mainly concerned with UV finiteness of S-matrix elements after the proper treatment of external legs in amputated
Green functions, which greatly reduces the complexity of the calculation.

However, renormalization equations are usually organized through different building blocks, where gauge-boson self-
energies embed process-independent (universal) higher-order corrections and play a privileged role. Therefore, their
structure has to be carefully analyzed, and the language of counterterms allows to disentangle UV overlapping diver-
gences which show up at two loops.

In a renormalizable gauge theory, in fact, the UV poles of any Green function can be removed order-by-order in
perturbation theory. In addition, the imaginary part of a Green function at a given order is fixed, through unitarity
constraints, by the previous orders. Therefore, UV-subtraction terms have to be at most polynomials in the external
momenta (in the following, “local” subtraction terms). Therefore, we will express our results using the language of
counterterms: we promote bare quantities (parameters and fields) to renormalized ones and fix the counterterms at one
loop in order to remove the UV poles.

Obviously, the absorption of UV divergences into local counterterms does not exhaust the renormalization procedure,
because we have still to connect renormalized quantities to experimental data points, thus making the theory predictive.
In the remainder of this section we discuss renormalization constants for all parameters and fields. We introduce the
following quantities

ΔUV =
2
ε
− γE− lnπ− ln

µ2R
µ2

, ΔUV(x) =
2
ε
− γE− lnπ− ln

x
µ2

, (37)

where ε = 4− d, d is the space-time dimension, γE = 0.5772 is the Euler - Mascheroni constant and µR is the renor-
malization scale. In Eq.(37) we have introduced an auxiliary mass µ which cancels in any UV-renormalized quantity;
µR cancels only after finite renormalization. Furthermore, x is positive definite. Only few functions are needed for
renormalization purposes,

A0 (m) =
µε

iπ2

∫

ddq
1

q2+m2
=−m2

[

ΔUV
(

M2
W

)

+ afin0 (m)
]

, afin0 (m) = 1− ln
m2

M2
W
, (38)

B0 (−s ; m1 , m2) =
µε

iπ2

∫

ddq
1

(q2+m21)((q+ p)2+m22)
= ΔUV

(

M2
W

)

+Bfin
0 (−s ;m1 , m2) , (39)

where the finite part is

Bfin
0 (−s ;m1 , m2) = 2− ln

m1m2
M2
W

−R−
1
2
m21−m22

s
ln
m21
m22

, R=
Λ
s
ln
m21+m22− s−Λ− i0

2m2m2
, (40)

where p2 =−s and Λ2 = λ
(

s , m21 , m22
)

is the Källen lambda function. Furthermore we introduce

LR = ln
µ2R
M2
W

, (41)

with the choice of the EW scale, x=M2
W, in Eq.(37).

Technically speaking the renormalization program is complete only when UV poles are removed from all, off-shell,
Green functions, something that is beyond the scope of this paper. Furthermore, we introduce UV decompositions also
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More details in the backup….

for Green functions: given a one-loop Green function with N external lines carrying Lorentz indices µ j, j = 1, . . . ,N,
we introduce form factors,

Sµ1 ... µN =
A

∑
a=1

SaKa
µ1 ... µN . (42)

Here the set Ka, with a = 1, . . . ,A, contains independent tensor structures made up of external momenta, Kronecker-
delta functions, elements of the Clifford algebra and Levi-Civita tensors. A large fraction of the form factors drops
from the final answer when we make approximations, e.g. vector bosons couple only to conserved currents etc.
Requiring that all (off-shell) form factors (including external unphysical lines) are made UV finite by means of local
counterterms implies working in the Rξξ -gauge, as shown (up to two loops in the SM) in Ref. [75].

A full generality is beyond the scope of this paper, we will limit ourselves to the usual ’t Hooft-Feynman gauge and to
those Green functions that are relevant for the phenomenological applications considered in this paper.

4.1 Tadpoles and transitions

We begin by considering the treatment of tadpoles: we fix β h, Eq.(21), such that ⟨0 |H|0⟩= 0 [45]. The solution is

β h = ig2M2
W

(

β
(4)
h + g6 β

(6)
h

)

, (43)

where we split according to the following equation (see Eq.(37))

β
(n)
h = β (n)

−1 ΔUV
(

M2
W

)

+β (n)
0 +β (n)

fin . (44)

The full result for the coefficients β (n) is given in Appendix A. The parameter Γ, defined in Eq.(14), is fixed by the
request that the Z−A transition is zero at p2 = 0; the corresponding expression is also reported in Appendix A.

4.2 H self-energy

The one-loop H self-energy is given by

SHH =
g2

16π2
ΣHH =

g2

16π2
(

Σ(4)HH+ g6 Σ
(6)
HH

)

. (45)

The bare H self-energy is decomposed as follows:

Σ(n)HH = Σ(n)HH;UVΔUV
(

M2
W

)

+Σ(n)HH;fin . (46)

Furthermore we introduce
Σ(n)HH ;fin(s) = Δ(n)

HH;fin(s)M
2
W+Π(n)

HH;fin(s)s . (47)

The full result for the H self-energy is given in Appendix B.

4.3 A self-energy

The one-loop A self-energy is given by

SµνAA =
g2

16π2
ΣµνAA , ΣµνAA =ΠAA Tµν , (48)

where the Lorentz structure is specified by the tensor

T µν =−sδ µν − pµ pν , (49)

9



NLO-EFT #1 : Gauge Fixing

Table 2: Redefinition of Wilson coefficients

ga1 = aφ g2a2 =−aφ! g2a3 =−aφD g
√
2a4 =−Ml

M aL φ
g
√
2a5 =−Mu

M auφ g
√
2a6 =−Md

M adφ g2a7 =−a(1)φ l g2 a8 =−a(1)φq
g2a9 =−aφ l g2a10 =−aφu g2a11 =−aφd g2 a12 =−aφud
g2a13 =−a(3)φ l g2a14 =−a(3)φq g2a15 = gS aφG ga16 = aφW
ga17 = aφB ga18 = aφWB g

√
2a19 =

Ml
M alW g

√
2a20 =

Mu
M auW

g
√
2a21 =

Md
M adW g

√
2a22 =

Ml
M alB g

√
2a23 =

Mu
M auB g

√
2a24 =

Md
M adB

g2a25 = gS auG g2a26 = gS adG

theory is weakly-coupled and renormalizable it follows that the PTG/LG classification of Ref. [70] (used here) is
correct. If we do not assume the above but work always in some EFT context (i.e. also the next high-energy theory is
EFT, possibly involving some strongly interacting theory) then classification changes, see Eqs. (A1-A2) of Ref. [15].

2.3 Four-fermion operators

For processes that involve external fermions and for the fermion self-energies we also need dim = 6 four-fermion
operators (see Tab. 3 of Ref. [48]). We show here one explicit example

Vuud d =
1
4
g2g6
M2 a(1)qq γµ γ+ ⊗ γµ γ++

1
8
g2g6
M2 a(1)qd γ

µ γ+ ⊗ γµ γ−

+
1
8
g2g6
M2 a(1)qu γµ γ− ⊗ γµ γ++

1
8
g2g6
M2 a(1)ud γ

µ γ− ⊗ γµ γ−

+
1
16

g2g6
M2 a(1)q uq d γ+ ⊗ γ++

1
16

g2g6
M2 a(1)quq d γ− ⊗ γ− , (20)

giving the uudd four-fermion vertex. Here γ± = 1/2(1± γ5) and g6 is defined in Eq.(28).

2.4 From the Lagrangian to the S -matrix

There are several technical points that deserve a careful treatment when constructing S -matrix elements from the La-
grangian of Eq.(17). We perform field and parameter redefinitions so that all kinetic and mass terms in the Lagrangian
of Eq.(17) have the canonical normalization. First we define

βh = 12
M4 aφ
g2Λ2

+β ′
h , β ′

h =

(

1+ dRβh
M2

Λ2

)

β h (21)

and β h is fixed, order-by-order, to have zero vacuum expectation value for the (properly normalized) Higgs field.

Particular care should be devoted in selecting the starting gauge-fixing Lagrangian. In order to reproduce the free SM
Lagrangian (after redefinitions) we fix an arbitrary gauge, described by four ξ parameters,

Lgf =−C+C−−
1
2

C 2
Z −

1
2

C 2
A , (22)

C ± =−ξW ∂µW±
µ + ξ±M φ± , CZ =−ξZ ∂µ Zµ+ ξ0

M
cθ

φ0 , CA = ξA ∂µAµ . (23)

5
ξi = 1 + ΔRi

Feynman rules for the physical fields remain 
unchanged,  shifts go into  FP Lagrangian

No dim-6 ghost operators ? ! 



NLO-EFT #2: two point functions 
Wave functions and counterterms

We construct self-energies, Dyson resum them and require that all propagators are 

UV finite. In a second step we construct 3 -point (or higher) functions, check their 

dim-4-finiteness and remove the remaining dim-6 UV divergences by mixing the 

Wilson coefficients Wi: 

 

Renormalized Wilson coefficients are scale dependent and the logarithm of the scale 

can be resummed in terms of the  LO coefficients of the anomalous dimension matrix  

3 Overview of the calculation

NLO EFT (dim = 6) is constructed according to the following scheme: each amplitude, e.g. H→| f⟩, contains one-
loop SM diagrams up to the relevant order in g, (tree) contact terms with one dim= 6 operator and one-loop diagrams
with one dim = 6 operator insertion. Note that the latter contain also diagrams that do not have a counterpart in the
SM (e.g. bubbles with 3 external lines). In full generality each amplitude is written as follows:

A =
∞

∑
n=N

gnA
(4)
n +

∞

∑
n=N6

n

∑
l=0

∞

∑
k=1

gn gl4+2kA
(4+2k)
n l k , (33)

where g is the SU(2) coupling constant and g4+2k = 1/(
√
2GFΛ2)k. For each process the dim = 4 LO defines the

value ofN (e.g. N = 1 for H→VV, N = 3 for H→ γγ etc.). Furthermore,N6 =N for tree initiated processes and N−2
for loop initiated ones. The full amplitude is obtained by inserting wave-function factors and finite renormalization
counterterms. Renormalization makes UV finite all relevant, on-shell, S-matrix elements. It is made in two steps: first
we introduce counterterms

Φ= ZΦΦren , p= Zp pren , (34)

for fields and parameters. Counterterms are defined by

Zi = 1+
g2

16π2
(

dZ(4)i + g6 dZ
(6)
i

)

. (35)

We construct self-energies, Dyson resum them and require that all propagators are UV finite. In a second step we
construct 3 -point (or higher) functions, check their O(4) -finiteness and remove the remainingO(6) UV divergences by
mixing the Wilson coefficients Wi:

Wi =∑
j
ZWi j W

ren
j . (36)

Renormalized Wilson coefficients are scale dependent and the logarithm of the scale can be resummed in terms of the
LO coefficients of the anomalous dimension matrix [11].

Our aim is to discuss Higgs couplings and their SM deviations which requires precise definitions [71–73]:

Definition The Higgs couplings can be extracted from Green’s functions in well-defined kinematic limits, e.g. residue
of the poles after extracting the parts which are 1P reducible. These are well-defined QFT objects, that we can probe
both in production and in decays; from this perspective, VH production or vector-boson-fusion are on equal footing
with gg fusion and Higgs decays. Therefore, the first step requires computing these residues which is the main result
of this paper.

Every approach designed for studying SM deviations at LHC and beyond has to face a critical question: generally
speaking, at LHC the EW core is embedded into a QCD environment, subject to large perturbative corrections and
we expect considerable progress in the “evolution” of these corrections; the same considerations apply to PDFs.
Therefore, does it make sense to ‘fit” the EW core? Note that this is a general question which is not confined to our
NLO approach.

In practice, our procedure is to write the answer in terms of SM deviations, i.e. the dynamical parts are dim = 4 and
certain combinations of the deviation parameters will define the pseudo-observables (PO) to be fitted. Optimally, part
of the factorizingQCD corrections could enter the PO definition. The suggested procedure requires the parametrization
to be as general as possible, i.e. no a priori dropping of terms in the basis of operators. This will allow us to “reweight”
the results when new (differential) K-factors become available; new input will touch only the dim = 4 components.
PDFs changing is the most serious problem: at LEP the e+e− structure functions were known to very high accuracy
(the effect was tested by using different QED radiators, differing by higher orders treatment); a change of PDFs at
LHC will change the convolution and make the reweighting less simple, but still possible. For recent progress on the
impact of QCD corrections within the EFT approach we quote Ref. [23].
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SM (e.g. bubbles with 3 external lines). In full generality each amplitude is written as follows:

A =
∞

∑
n=N

gnA
(4)
n +

∞

∑
n=N6

n

∑
l=0

∞

∑
k=1

gn gl4+2kA
(4+2k)
n l k , (33)

where g is the SU(2) coupling constant and g4+2k = 1/(
√
2GFΛ2)k. For each process the dim = 4 LO defines the

value ofN (e.g. N = 1 for H→VV, N = 3 for H→ γγ etc.). Furthermore,N6 =N for tree initiated processes and N−2
for loop initiated ones. The full amplitude is obtained by inserting wave-function factors and finite renormalization
counterterms. Renormalization makes UV finite all relevant, on-shell, S-matrix elements. It is made in two steps: first
we introduce counterterms

Φ= ZΦΦren , p= Zp pren , (34)

for fields and parameters. Counterterms are defined by

Zi = 1+
g2

16π2
(

dZ(4)i + g6 dZ
(6)
i

)

. (35)

We construct self-energies, Dyson resum them and require that all propagators are UV finite. In a second step we
construct 3 -point (or higher) functions, check their O(4) -finiteness and remove the remainingO(6) UV divergences by
mixing the Wilson coefficients Wi:

Wi =∑
j
ZWi j W

ren
j . (36)

Renormalized Wilson coefficients are scale dependent and the logarithm of the scale can be resummed in terms of the
LO coefficients of the anomalous dimension matrix [11].

Our aim is to discuss Higgs couplings and their SM deviations which requires precise definitions [71–73]:

Definition The Higgs couplings can be extracted from Green’s functions in well-defined kinematic limits, e.g. residue
of the poles after extracting the parts which are 1P reducible. These are well-defined QFT objects, that we can probe
both in production and in decays; from this perspective, VH production or vector-boson-fusion are on equal footing
with gg fusion and Higgs decays. Therefore, the first step requires computing these residues which is the main result
of this paper.

Every approach designed for studying SM deviations at LHC and beyond has to face a critical question: generally
speaking, at LHC the EW core is embedded into a QCD environment, subject to large perturbative corrections and
we expect considerable progress in the “evolution” of these corrections; the same considerations apply to PDFs.
Therefore, does it make sense to ‘fit” the EW core? Note that this is a general question which is not confined to our
NLO approach.

In practice, our procedure is to write the answer in terms of SM deviations, i.e. the dynamical parts are dim = 4 and
certain combinations of the deviation parameters will define the pseudo-observables (PO) to be fitted. Optimally, part
of the factorizingQCD corrections could enter the PO definition. The suggested procedure requires the parametrization
to be as general as possible, i.e. no a priori dropping of terms in the basis of operators. This will allow us to “reweight”
the results when new (differential) K-factors become available; new input will touch only the dim = 4 components.
PDFs changing is the most serious problem: at LEP the e+e− structure functions were known to very high accuracy
(the effect was tested by using different QED radiators, differing by higher orders treatment); a change of PDFs at
LHC will change the convolution and make the reweighting less simple, but still possible. For recent progress on the
impact of QCD corrections within the EFT approach we quote Ref. [23].
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where aAA = sθ cθ aφWB+c
2
θ
aφB+ s2θ aφW and cθ = c

ren
θ
etc. The last step in the UV-renormalization procedure requires

a mixing among Wilson coefficients which cancels the remaining (dim= 6) parts. To this purpose we define

Wi =∑
j
ZWi j W

ren
j , ZWi j = δi j+

g2

16π2
dZWi j ΔUV . (136)

The matrix dZW is fixed by requiring cancellation of the residual UV poles and we obtain

T
(6)
HAA ;div → T

(6),R
HAA ln

µ2R
M2 . (137)

Elements of the mixing matrix derived from H→AA are given in Appendix G. The result of Eq.(135) becomes

T ren
HAA = i

g3ren
16π2

(

T
(4)
HAA+ g6 T

(6),b
HAA ;fin+ g6T

(6),R
HAA ln

µ2R
M2

)

+ igreng6 T
(6),a
HAA . (138)

Inclusion of wave-function renormalization factors and of external leg factors (due to field redefinition described in
Section 2.4) gives

T ren
HAA

[

1−
g2ren
16π2

(

WA+
1
2
WH

)

][

1+ g6

(

2aAA+ aφ!−
1
4
aφD
)

]

. (139)

Finite renormalization requires writing

M2
ren = M2

W

(

1+
g2ren
16π2

dZ MW

)

,

cren
θ

= cW

(

1+
g2ren
16π2

dZ cθ

)

,

gren = gF
(

1+
g2F
16π2

dZ g

)

, (140)

where g2F = 4
√
2GFM2

W and cW = MW/MZ. Another convenient way for writing the answer is the following: after
renormalization we neglect all fermion masses but t,b and write

THAA = i
g3F s2W
8π2 ∑

I=W,t,b
κHAAI T

I
HAA ;LO+ igF g6

M2
H

MW
Wren
1

+ i
g3F g6
π2

[

∑
i=1,3

A nfc
W, iWren

i +T nfc
HAA ;bWren

9 + ∑
i=1,2

T nfc
HAA ; t, iWren

10+i

]

, (141)

where Wilson coefficients are those in Tab. 4. The κ -factors are given by

κprocI = 1+ g6Δκ
proc
I (142)

and there are additional, non-factorizable, contributions. The κ factors are

ΔκHAAt =
3
16

M2
H

sW M2
W
atWB+(2− s2W)

cW
sW

aAZ+(6− s2W)aAA

−
1
2

[

aφD+ 2s2W (c2W aZZ− atφ− 2aφ!)
] 1
s2W

,

ΔκHAAb = −
3
8

M2
H

sW M2
W
abWB+(2− s2W)

cW
sW

aAZ+(6− s2W)aAA
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NLO-EFT #2: two point functions 
Wave functions and counterterms

3 Overview of the calculation

NLO EFT (dim = 6) is constructed according to the following scheme: each amplitude, e.g. H→| f⟩, contains one-
loop SM diagrams up to the relevant order in g, (tree) contact terms with one dim= 6 operator and one-loop diagrams
with one dim = 6 operator insertion. Note that the latter contain also diagrams that do not have a counterpart in the
SM (e.g. bubbles with 3 external lines). In full generality each amplitude is written as follows:

A =
∞

∑
n=N

gnA
(4)
n +

∞

∑
n=N6

n

∑
l=0

∞

∑
k=1

gn gl4+2kA
(4+2k)
n l k , (33)

where g is the SU(2) coupling constant and g4+2k = 1/(
√
2GFΛ2)k. For each process the dim = 4 LO defines the

value ofN (e.g. N = 1 for H→VV, N = 3 for H→ γγ etc.). Furthermore,N6 =N for tree initiated processes and N−2
for loop initiated ones. The full amplitude is obtained by inserting wave-function factors and finite renormalization
counterterms. Renormalization makes UV finite all relevant, on-shell, S-matrix elements. It is made in two steps: first
we introduce counterterms

Φ= ZΦΦren , p= Zp pren , (34)

for fields and parameters. Counterterms are defined by

Zi = 1+
g2

16π2
(

dZ(4)i + g6 dZ
(6)
i

)

. (35)

We construct self-energies, Dyson resum them and require that all propagators are UV finite. In a second step we
construct 3 -point (or higher) functions, check their O(4) -finiteness and remove the remainingO(6) UV divergences by
mixing the Wilson coefficients Wi:

Wi =∑
j
ZWi j W

ren
j . (36)

Renormalized Wilson coefficients are scale dependent and the logarithm of the scale can be resummed in terms of the
LO coefficients of the anomalous dimension matrix [11].

Our aim is to discuss Higgs couplings and their SM deviations which requires precise definitions [71–73]:

Definition The Higgs couplings can be extracted from Green’s functions in well-defined kinematic limits, e.g. residue
of the poles after extracting the parts which are 1P reducible. These are well-defined QFT objects, that we can probe
both in production and in decays; from this perspective, VH production or vector-boson-fusion are on equal footing
with gg fusion and Higgs decays. Therefore, the first step requires computing these residues which is the main result
of this paper.

Every approach designed for studying SM deviations at LHC and beyond has to face a critical question: generally
speaking, at LHC the EW core is embedded into a QCD environment, subject to large perturbative corrections and
we expect considerable progress in the “evolution” of these corrections; the same considerations apply to PDFs.
Therefore, does it make sense to ‘fit” the EW core? Note that this is a general question which is not confined to our
NLO approach.

In practice, our procedure is to write the answer in terms of SM deviations, i.e. the dynamical parts are dim = 4 and
certain combinations of the deviation parameters will define the pseudo-observables (PO) to be fitted. Optimally, part
of the factorizingQCD corrections could enter the PO definition. The suggested procedure requires the parametrization
to be as general as possible, i.e. no a priori dropping of terms in the basis of operators. This will allow us to “reweight”
the results when new (differential) K-factors become available; new input will touch only the dim = 4 components.
PDFs changing is the most serious problem: at LEP the e+e− structure functions were known to very high accuracy
(the effect was tested by using different QED radiators, differing by higher orders treatment); a change of PDFs at
LHC will change the convolution and make the reweighting less simple, but still possible. For recent progress on the
impact of QCD corrections within the EFT approach we quote Ref. [23].
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Discussion point:

After we use different operators to remove residual dim-6 
divergences, the interpretation of single operator effects 
becomes ill-defined



NLO-EFT #3 : WST Identities
A A

EFT = 0

Z Z

EFT +

Z φ0

EFT +

φ0 Z

EFT +

φ0 φ0

EFT = 0

W W

EFT +

W φ

EFT +

φ W

EFT +

φ φ

EFT = 0

A Z

EFT +

A φ0

EFT = 0

Figure 1: Doubly-contracted WST identities with two external gauge bosons. Gray circles denote the sum of the needed Feynman
diagrams at any given order in EFT.

4.7 Ward-Slavnon-Taylor identities

Let us consider doubly-contracted two-point WST identity [67–69], obtained by connecting two sources through
vertices and propagators. Here we get, at every order in perturbation theory, the identities of Fig. 1. WST identi-
ties [67–69] require additional self-energies and transitions, i.e. scalar-scalar and vector-scalar components

SSS =
g2

16π2
[

Σ(4)SS + g6 Σ
(6)
SS

]

, SµVS = i
g2

16π2
[

Σ(4)VS+ g6 Σ
(6)
VS

]

pµ . (60)

4.8 Dyson resummed propagators

We will now present the Dyson resummed propagators for the electroweak gauge bosons. The functionΠIi j represents
the sum of all 1PI diagrams with two external boson fields, i and j, to all orders in perturbation theory (as usual, the
external Born propagators are not to be included in the expression for ΠIi j). We write explicitly its Lorentz structure,

ΠIµν,VV = DIVV δµν +PIVV pµ pν , (61)

where V indicates SM vector fields, and pµ is the incoming momentum of the vector boson. The full propagator for a
field i which mixes with a field j via the functionΠIi j is given by the perturbative series

Δ̄ii = Δii + Δii
∞

∑
n=0

n+1

∏
l=1
∑
kl
ΠIkl−1klΔklkl , (62)

= Δii + ΔiiΠIiiΔii + Δii ∑
k1=i, j

ΠIik1Δk1k1Π
I
k1iΔii + . . .

where k0 = kn+1 = i, while for l ≠ n+ 1, kl can be i or j. Δii is the Born propagator of the field i. We write

Δ̄ii = Δii [1− (ΠΔ)ii]
−1 , (63)
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NLO-EFT #4 : Dyson 
Propagators

and refer to Δ̄ii as the resummed propagator. The quantity (ΠΔ)ii is the sum of all the possible products of Born
propagators and self-energies, starting with a 1PI self-energy ΠIii, or transition ΠIi j, and ending with a propagator Δii,
such that each element of the sum cannot be obtained as a product of other elements in the sum.

In practice it is useful to define, as an auxiliary quantity, the “partially resummed” propagator for the field i, Δ̂ii, in
which we resum only the proper 1PI self-energy insertions ΠIii, namely,

Δ̂ii = Δii
[

1−ΠIiiΔii
]−1

. (64)

If the particle i were not mixing with j through loops or two-leg vertex insertions, Δ̂ii would coincide with the re-
summed propagator Δ̄ii. Partially resummed propagators allow for a compact expression for (ΠΔ)ii,

(ΠΔ)ii =ΠIiiΔii+ΠIi jΔ̂ j jΠIjiΔii , (65)

so that the resummed propagator of the field i can be cast in the form

Δ̄ii = Δii
[

1−
(

ΠIii+ΠIi jΔ̂ j jΠ
I
ji
)

Δii
]−1 (66)

We can also define a resummed propagator for the i- j transition. In this case there is no correspondingBorn propagator,
and the resummed one is given by the sum of all possible products of 1PI i and j self-energies, transitions, and Born
propagators starting with Δii and ending with Δ j j. This sum can be simply expressed in the following compact form,

Δ̄i j = Δ̄iiΠIi j Δ̂ j j . (67)

4.9 Renormalization of two-point functions

Dyson resummed propagators are crucial for discussing several issues, from renormalization to Ward-Slavnov-Taylor
(WST) identities [67–69]. Consider the W or Z self-energy; in general we have

ΣVVµν (s) =
g2

16π2
[

DVV(s)δµν +PVV(s) pµ pν
]

. (68)

The corresponding partially resummed propagator is

Δ̂VVµν =−
δµν

s−M2
V+

g2
16π2 D

VV
+

g2

16π2
PVV pµ pν

(

s−M2
V+

g2
16π2 D

VV
) (

s−M2
V+

g2
16π2 D

VV− g2
16π2 P

VV s
) . (69)

We only consider the case where V couples to a conserved current; furthermore, we start by including one-particle
irreducible (1PI) self-energies. Therefore the inverse propagators are defined as follows:

• H partially resummed propagator is given by

g−2 Δ̂−1
HH(s) =−g−2 ZH

(

s−M2
H

)

−
1

16π2
ΣHH . (70)

• A partially resummed propagator is given by

g−2 Δ̂−1
AA(s) =−g−2 s

(

ZA−
1

16π2
ΠAA

)

. (71)

• W partially resummed propagator is given by

g−2 Δ̂−1
WW(s) =−g−2 ZW

(

s−M2)−
1

16π2
DWW . (72)

• Z partially resummed propagator is given by

g−2 Δ̂−1
ZZ(s) =−g−2 ZZ

(

s−M2
0
)

−
1

16π2
DZZ . (73)
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F. ex. Higgs: 

• Z−A transition is given by

SZAµν + SZActµν SZActµν =
g2

16π2
ΣZActµν ΔUV , (74)

where SZAµν is given in Eq.(56) and

ΣZActµν = s dZ(4)AZ δµν + g6
[

s dZ(6)AZ δµν − aAZ
(

dZ(4)Z + dZ(4)A
)

pµ pν
]

. (75)

• f resummed propagator is given by

G−1
f (p) = Zf

(

i/p+mf
)

Zf−Sf , (76)
where the counterterms are

Zf = ZRf γ−+ZLf γ+ , Zf = ZLf γ++ZRf γ− γ± =
1
2

(

1± γ5
)

, (77)

ZIf = 1−
1
2

g2

16π2
[

dZ(4)I f + g6 dZ
(6)
I f ΔUV

]

, mf =Mf
(

1+
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NLO-EFT #5 : Finite Renormalization

We discuss 3 schemes for the physical parameters 
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NLO-EFT #5 : Finite Renormalization
We discuss 3 schemes for the physical parameters 

• On-shell renormalization: In the Complex Pole scheme we replace the conventional on-shell mass renormalization equation with the associated
expression for the complex pole
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]

=⇒m20 = sV
[
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M2
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)

]

, (95)

where sV is the complex pole associated to V. In this Section we will discuss on-shell finite renormalization; after
removal of UV poles we have replaced m0 → mren etc. and we introduce

MV ren =MV ;OS+
g2ren
16π2

(

dZ (4)
MV + g6 dZ

(6)
MV

)

(96)

and require that s=MV;OS is a zero of the real part of the inverse V propagator, up toO(g2g6). Therefore we introduce

M2
ren = M2

W;OS

[

1+
g2ren
16π2

(

dZ (4)
MW + g6 dZ

(6)
MW

])

,

M2
H ren = M2

H ;OS

[

1+
g2ren
16π2

(

dZ (4)
MH + g6 dZ

(6)
MH

)]

,

cren
θ

= cW
[

1+
g2ren
16π2

(

dZ (4)
cθ + g6 dZ

(6)
cθ

)]

, (97)

where c2W =M2
W;OS/M2

Z ;OS and s=M2
Z ;OS will be a zero of the real part of the inverse Z propagator.

Finite renormalization in the fermion sector requires the following steps: if Mf ;OS denotes the on-shell fermion mass,
using Eq.(77), we write
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[

dZ (4)
Mf + g6 dZ

(6)
Mf

]

= Δf
(

M2
f ;OS

)

+Mf ;OSVf
(

M2
f ;OS

)

(98)

and determine the finite counterterms which are given in Appendix E.

4.12.1 GF renormalization scheme

In the GF -scheme we write the following equation for the g finite renormalization
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where gexp will be expressed in terms of the Fermi coupling constant GF. The µ -lifetime can be written in the form

1
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)
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The radiative corrections are δµ = δWµ + δG where δG is the sum of vertices, boxes etc and δWµ is due to the W
self-energy. The renormalization equation becomes

GF√
2
=

g2

8M2

{

1+
g2

16π2

[

δG+
1
M2 ΣWW(0)

]}

, (101)

where we expand the solution for g
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Note that the non universal part of the corrections is given by
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NLO-EFT #5 : Finite Renormalization
We discuss 3 schemes for the physical parameters 
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expression for the complex pole

m20 =M2
OS

[

1+
g2

16π2
Re ΣVV;fin

(

M2
OS
)

]

=⇒m20 = sV
[

1+
g2

16π2
ΣVV ;fin

(

M2
OS
)

]

, (95)

where sV is the complex pole associated to V. In this Section we will discuss on-shell finite renormalization; after
removal of UV poles we have replaced m0 → mren etc. and we introduce

MV ren =MV ;OS+
g2ren
16π2

(

dZ (4)
MV + g6 dZ

(6)
MV

)

(96)

and require that s=MV;OS is a zero of the real part of the inverse V propagator, up toO(g2g6). Therefore we introduce

M2
ren = M2

W;OS

[

1+
g2ren
16π2

(

dZ (4)
MW + g6 dZ

(6)
MW

])

,

M2
H ren = M2

H ;OS

[

1+
g2ren
16π2

(

dZ (4)
MH + g6 dZ

(6)
MH

)]

,

cren
θ

= cW
[

1+
g2ren
16π2

(

dZ (4)
cθ + g6 dZ

(6)
cθ

)]

, (97)

where c2W =M2
W;OS/M2

Z ;OS and s=M2
Z ;OS will be a zero of the real part of the inverse Z propagator.

Finite renormalization in the fermion sector requires the following steps: if Mf ;OS denotes the on-shell fermion mass,
using Eq.(77), we write

Mf
[

dZ (4)
Mf + g6 dZ

(6)
Mf

]

= Δf
(

M2
f ;OS

)

+Mf ;OSVf
(

M2
f ;OS

)

(98)

and determine the finite counterterms which are given in Appendix E.

4.12.1 GF renormalization scheme

In the GF -scheme we write the following equation for the g finite renormalization

gren = gexp+
g2exp
16π2

(

dZ (4)
g + g6 dZ

(6)
g

)

, (99)

where gexp will be expressed in terms of the Fermi coupling constant GF. The µ -lifetime can be written in the form

1
τµ

=
M5

µ

192π3
g4

32M4
(

1+ δµ
)

. (100)

The radiative corrections are δµ = δWµ + δG where δG is the sum of vertices, boxes etc and δWµ is due to the W
self-energy. The renormalization equation becomes

GF√
2
=

g2

8M2

{

1+
g2

16π2

[

δG+
1
M2 ΣWW(0)

]}

, (101)

where we expand the solution for g

g2ren = 4
√
2GFM2

W;OS

{

1+
GFM2

W;OS

2
√
2π2

[

δG+
1
M2 ΣWW;fin(0)

]

}

(102)

Note that the non universal part of the corrections is given by

δG = δ (4)
G + g6 δ

(6)
G , δ (4)

G = 6+
7− 4s2

θ

2s2
θ

lnc2
θ
, (103)
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NLO-EFT #5 : Finite Renormalization
We discuss 3 schemes for the physical parameters 

• Alpha renormalization: 

but the contribution of dim= 6 operators to muon decay is not available yet and will not be included in the calculation.
It is worth noting that Eqs.(97)–(101) define finite renormalization in the {GF ,MW ,MZ} input parameter set.

We show few explicit examples of finite renormalization, i.e. how to fix finite counterterms. From the H propagator
and the definition of on-shell H mass one obtains

dZ (n)
MH =

M2
W;OS

M2
H ;OS

Re Δ(n)
HH ;fin

(

M2
H ;OS

)

+ReΠ(n)
HH ;fin

(

M2
H ;OS

)

, (104)

whereMH is the renormalized H mass andMH ;OS is the on-shell H mass. >From the W propagator we have

dZ (n)
MW = Re Δ(n)

WW;fin

(

M2
W;OS

)

+ReΠ(n)
WW;fin

(

M2
W;OS

)

. (105)

>From the Z propagator and the definition of on-shell Z mass we have

dZ (n)
cθ =

1
2
Re
[

dZ (n)
MW − c2W Δ

(n)
ZZ ;fin

(

M2
Z ;OS

)

−Π(n)
ZZ ;fin

(

M2
Z ;OS

)]

, (106)

with c2W =M2
W;OS/M2

Z ;OS. All quantities in Eqs.(104)–(106) are the renormalized ones.

4.12.2 α renormalization scheme

This scheme uses the fine structure constant α . The new renormalization equation is

g2 s2
θ
= 4πα

[

1−
α
4π

ΠAA(0)
s2
θ

]

, (107)

where α = αQED(0). Therefore, in this scheme, the finite counterterms are

g2ren = g2A
[

1+
α
4π

dZ g

]

, cren
θ

= ĉθ
[

1+
α
4π

dZ cθ

]

, Mren =MZ ;OS ĉ2θ
[

1+
α
8π

dZ MW

]

, (108)

where the parameters ĉθ and gA are defined by

g2A =
4π α
ŝ2
θ

ŝ2
θ
=
1
2

[

1−
√

1− 4
π α√

2GFM2
Z ;OS

]

. (109)

The reason for introducing this scheme is that the S,T and U parameters (see Ref. [76]) have been originally given in
the {α , GF ,MZ} scheme while, for the rest of the calculations we have adopted the more convenient {GF ,MW ,MZ}
scheme. In this scheme, after requiring that M2

Z ;OS is a zero of the real part of the inverse Z propagator, we are left
with one finite counterterm, dZ g. The latter is fixed by using GF and requiring that

1√
2
GF =

g2

8M2

{

1+
g2

16π2
[

δG+
1
M2 ΔWW(0)−

(

dZW+ dZMW
)

ΔUV
]}

, (110)

where we use
g= gren

(

1+
g2ren
16π2

dZgΔUV
)

, gren = gA
(

1+
α
8π

dZ g

)

, (111)

for UV and finite renormalization.
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ŝ2
θ

ŝ2
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Useful for S,T,U params. and more intuitive SMEFT shifts 



Example: H to AA
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The renormalization procedure is the same as you learned for the standard model: add coun-
terterms for fields and parameters, construct self-energies, Dyson resum them and make the propa-
gators to be UV finite.

F = ZF, p = Zp pren, Zi = 1+
g2

16p2

⇣
dZ(4)

i +g6dZ(6)
i

⌘
(4.1)

Where F are the fields and p parameters. Further, look at 3-point functions, and remove
remanent UV divergences. In this particular case we found that Wilson coefficients need to be
mixed in order to cancel such divergences:

Wi = Â
j

ZW
i j W ren

j (4.2)

The mixing-coefficients can be found in Appendix G of [5]. Renormalized Wilson coefficients
are scale dependent, and the logarithm of the scale can be resummed in terms of the anomalous
dimension matrix [4, 25, 26].

Note: Range of applicability

Field theories, up to some exceptions, have an energy scale. And it is a common mistake to
think that this scale (L,µR,µQCD) can take any value. For our Higgs EFT (NLO, dim 6) the range
where we can be confident of our predictions is: 3 TeV < L < 5 TeV. Here we will try to make
these thresholds clearer:

• L > 3 TeV : Higher dimensional operators can be classified as PTG (potentially tree ge-
nerated) or LG (loop generated), depending on their origin in the UV theory [27]. Loop
generated operators are suppressed by a factor of 1/16p2 with respect to tree generated ones.
Moreover, the Wilson coefficients for dim=8 tree-generated operators are of order ⇡ n2/L2.
This means that for values of L  3 TeV, we must either neglect loop-generated operators or
include dimension 8 terms.

• L < 5 TeV: Look at the order of the new coupling constant, g6 = 1p
2GF L2 . For values of

L around 5 TeV, the dimension 6 contributions are of the same size of the loop contribu-
tions: g6 ⇡ g2

4p . If we choose the EFT scale to be bigger, we should also include higher-loop
corrections to stay consistent.

5. Some results for Higgs 2-body decays

Let us sketch here the H ! gg processes commented in the beginning. The amplitude for the
process H(P)! Aµ(p1)An(p2) is:

Aµn
HAA = THAA

pµ
2 pn

1 � p1 · p2d µn

M2
H

(5.1)

And THAA was found to be [5]:

7

The amplitude for the process H(P) → Aµ (p1)Aν (p2) is:  

PoS(PLANCK 2015)049
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THAA = i
g3

16p2

0

B@T
(4)

HAA +g6 T
(6),b

HAA| {z }
UVdivergent

1

CA+ igg6 T
(6),a

HAA| {z }
UVfinite

, (5.2)

where we can recognize the purely standard-model part, T
(4)

HAA, containing the bosonic and t,b
loops, and the new contributions coming from the dimension 6 insertions: T

(6)
HAA. As mentioned

before, the counterterms are not enough to remove the divergent part. We need to mix the Wilson
coefficients in order to remove remaining UV divergences. Finally the renormalized amplitude can
be written as:

T
ren

HAA = i
g3

ren
16p2

✓
T

(4)
HAA +g6T

(6),b
HAA; f in +T

(6),R
HAA ln

µ2
R

M2

◆
+ igreng6T

(6),a
HAA (5.3)

The scale dependence has been left explicit, such that one can compare this result with the
one in [4] and find out they agree, or use the renormalization group equations to resum these
logarithms. The anomalous dimension matrix for the complete basis9 of SM dimension 6 operators
was calculated in [26].

Note that up to now we did as few approximations as possible. In particular, we did not apply
the zero-width approximation, and we did not neglect loop-generated operators. In this particular
case we could now neglect such LG operators to find that all non-factorizable terms vanish.

6. Conclusions

We discussed a method to study SM deviations from a SM point of view, at next-to-leading
order. From a phenomenological point of view, the current challenge is to see how can we take the
best out of the data from LHC RUN-II, given the change of paradigm with respect to RUN-I: after
the Higgs has been observed we are not searching for a specific resonance anymore.

We strongly believe that the combination of EFT + POs will help us shed some light on the
possible BSM scenarios. Of course specific BSM models are important and interesting to study,
but we also need a tool to explore them within the current experimental thresholds.

Having said that, the next challenge is to define the experimental strategy to follow. Some
suggestions regarding a Bayesian analysis of Higgs couplings have been presented in [28]. In [29]
a number of pseudo-observables are fitted against pre-LHC data, as a first test for SM-EFT. A
discussion on how to approach this question, namely how to use electroweak precision data and
other well-known measurements (electric dipole moment, masses, . . . ) in the context of NLO-EFT
is addressed in [12].

Moreover, the software Rosetta [30] has been recently launched. With it, one can translate
different effective operators into the main dimension 6 bases. Then, by means of Feynrules [31],
one can implement any EFT into various analysis tools, such as Monte Carlo generators, that can
be used to fit LHC data.

92499 operators
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NLO-EFT #6 : Three point functions

More details in the backup….



Example: H to bb

Pecjak et al 1904.06358

mH 125 GeV m
(`)

b
(mH) 3.0 GeV

mt 173 GeV e
(`)(mH)

p
4⇡/128

MW 80.4 GeV v
(`)(mH) 240 GeV

MZ 91.2 GeV ↵s (mH) 0.1

Table 1. Input parameters employed throughout the calculation, where we have also listed the derived
quantity v

(`)(mH) ⌘ 2MW ŝw/e
(`)(mH) for convenience.

Contributions to the decay rate from dimension-6 operators are then suppressed by an explicit
power of v̄

(`)(µ)2/⇤2

NP
, which for the input parameters in table 1 leads to a roughly 5%

suppression factor for ⇤NP = 1 TeV and C̃i ⇠ 1.
We shall present numerical results normalized to the LO SM decay rate. We thus define

�LO(µ) ⌘ �
(4,0)

`
(µ) + �

(6,0)

`
(µ)

�
(4,0)

`
(mH)

,

�NLO(µ) ⌘ �LO(µ) +
�
(4,1)

`
(µ) + �

(6,1)

`
(µ)

�
(4,0)

`
(mH)

. (5.2)

Using µ = mH and supressing the arguments on v
(`)(mH) and C̃i(mH), we find

�LO(mH) = 1 +
(v(`))2

⇤2

NP

"
3.74C̃HWB + 2.00C̃H2 � 1.41

v̄
(`)

m
(`)

b

C̃bH + 1.24C̃HD

#
. (5.3)

In quoting this result, we have kept a factor of v̄/mb ⇠ 80 multiplying the C̃bH contribution
symbolic. We do this to highlight the fact that the C̃bH contribution to the decay rate scales
as mb rather than m

2

b
as in the SM, which can be seen explicitly in (B.2). The same is true

of six additional coefficients which enter the decay rate at NLO: C̃bG, C̃bW , C̃bB, C̃Htb, C̃
(1)

qtqb

and C̃
(8)

qtqb
. It is worth mentioning that if MFV is imposed then all of these coefficients scale as

yb ⇠ mb/v̄, so that their contributions to the decay rate scale as m2

b
. However, our results are

not limited to MFV, so keeping factors of v̄/mb symbolic when multiplying the coefficients
mentioned above is simply a matter of convenience. For the same reason, when quoting results
from operators such as QbB or QbG where gauge bosons couple through field strengths rather
than covariant derivatives, we keep enhancement factors of 1/e or 1/gs compared to the SM
contributions symbolic. With these conventions, the NLO result can be written as

�NLO(mH) = 1.13 +
(v̄(`))2

⇤2

NP

⇢
4.16C̃HWB + 2.40C̃H2 � 1.73

v̄
(`)

m
(`)

b

C̃bH + 1.33C̃HD

+ 2.75C̃HG � 0.12C̃(3)

Hq
+

✓
� 7.9C̃Ht + 5.8C̃(1)

Hq
+ 3.1

v̄
(`)

m
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b
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(`)(mH) for convenience.

Contributions to the decay rate from dimension-6 operators are then suppressed by an explicit
power of v̄

(`)(µ)2/⇤2

NP
, which for the input parameters in table 1 leads to a roughly 5%

suppression factor for ⇤NP = 1 TeV and C̃i ⇠ 1.
We shall present numerical results normalized to the LO SM decay rate. We thus define

�LO(µ) ⌘ �
(4,0)

`
(µ) + �

(6,0)

`
(µ)

�
(4,0)

`
(mH)

,

�NLO(µ) ⌘ �LO(µ) +
�
(4,1)

`
(µ) + �

(6,1)

`
(µ)

�
(4,0)

`
(mH)

. (5.2)

Using µ = mH and supressing the arguments on v
(`)(mH) and C̃i(mH), we find

�LO(mH) = 1 +
(v(`))2

⇤2

NP

"
3.74C̃HWB + 2.00C̃H2 � 1.41

v̄
(`)

m
(`)

b

C̃bH + 1.24C̃HD

#
. (5.3)

In quoting this result, we have kept a factor of v̄/mb ⇠ 80 multiplying the C̃bH contribution
symbolic. We do this to highlight the fact that the C̃bH contribution to the decay rate scales
as mb rather than m

2

b
as in the SM, which can be seen explicitly in (B.2). The same is true

of six additional coefficients which enter the decay rate at NLO: C̃bG, C̃bW , C̃bB, C̃Htb, C̃
(1)

qtqb

and C̃
(8)

qtqb
. It is worth mentioning that if MFV is imposed then all of these coefficients scale as

yb ⇠ mb/v̄, so that their contributions to the decay rate scale as m2

b
. However, our results are

not limited to MFV, so keeping factors of v̄/mb symbolic when multiplying the coefficients
mentioned above is simply a matter of convenience. For the same reason, when quoting results
from operators such as QbB or QbG where gauge bosons couple through field strengths rather
than covariant derivatives, we keep enhancement factors of 1/e or 1/gs compared to the SM
contributions symbolic. With these conventions, the NLO result can be written as

�NLO(mH) = 1.13 +
(v̄(`))2

⇤2

NP

⇢
4.16C̃HWB + 2.40C̃H2 � 1.73

v̄
(`)

m
(`)

b

C̃bH + 1.33C̃HD

+ 2.75C̃HG � 0.12C̃(3)

Hq
+

✓
� 7.9C̃Ht + 5.8C̃(1)

Hq
+ 3.1

v̄
(`)

m
(`)

b

C̃
(1)

qtqb
� 3.1C̃tH + 2.7C̃HW

– 20 –

SM C̃HWB C̃H2 C̃bH C̃HD

NLO QCD-QED 18.2% 17.9% 18.2% 18.2% 18.2%
NLO large-mt -3.1% -4.6% 3.2% 3.5% -9.0%
NLO remainder -2.2% -1.9% -1.2 % 0.6% -2.0%
NLO correction 12.9% 11.3% 20.2% 22.3% 7.1%

Table 2. Size of NLO corrections to different terms in LO decay rate, split into QCD-QED, large
mt, and remaining components. See text for further explanation.
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m
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22
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� 4⇥ 10�5
v̄
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m
(`)

b

C̃bB

�
. (5.4)

By far the largest NLO correction is from C̃HG, which is a QCD effect enhanced by a double
logarithm in mb/mH as described in section 4.1. Order 10% corrections (in units of v̄2/⇤2

NP
)

arise from C̃
(1)

Hq
, C̃(3)

Hq
and C̃Ht. In total there are 16 operators which contribute at greater

than a percent level to the decay rate, 12 of which first appear at NLO.
Generally speaking, an operator gives a significant contribution only if it involves QCD

or large-mt corrections. To illustrate the relative importance of these two effects, we show in
table 2 the division of the NLO corrections to operators appearing at tree level into QCD-
QED corrections, large-mt corrections, and remaining corrections (denoted by �`,g,� , �`,t, and
�`,rem). For the dimension-6 operators, the numbers are defined as the contribution of the
Wilson coefficient C̃i to �

(1)

`
divided by its contribution to �

(0)

`
. The results show that while

the QCD corrections are dominant, the electroweak corrections are non-negligible and depend
strongly on the Wilson coefficient. For instance, the electroweak corrections from C̃HD are
�11%, while those from C̃bH are +3%. Therefore, approximating the NLO corrections in
SMEFT by multiplying the tree level result with a universal K-factor derived from the SM
QCD corrections would be a poor estimate to the full calculation performed here. We also
note that the large-mt corrections indeed make up the bulk of the electroweak corrections,
although deviations from that approximation are between 10� 40%. We have observed that
this pattern holds for the other coefficients appearing in the NLO result.
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literature

• Charge renormalisation  


• Z to ff 


• Z & W poles


• H to Z ff 


• H to VV


• And others.…  
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Abstract

The integration of heavy scalar fields is discussed in a class of BSM models, containing more that one representation
for scalars and with mixing. The interplay between integrating out heavy scalars and the Standard Model decoupling
limit is examined. In general, the latter cannot be obtained in terms of only one large scale and can only be achieved
by imposing further assumptions on the couplings. Systematic low-energy expansions are derived in the more general,
non-decoupling scenario, including mixed tree-loop and mixed heavy-light generated operators. The number of local
operators is larger than the one usually reported in the literature.
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1. Introduction

There are two ways to use effective field theories (EFT), the bottom-up approach and the top-down approach. To
apply the first, we must distinguish between two scenarios: a) there is no relevant theory at the energy scale under
consideration, in which case one has to construct a Lagrangian from the symmetries that are relevant at that scale,
b) there is already some EFT, e.g. Standard Model (SM) EFT or SMEFT, which represents the physics in a region
characterized by a cut-off parameter L. At higher energies, new phenomena might show up and our EFT does not
account for them.

In the top-down approach there is some theory, assumed to be ultraviolet (UV) complete or valid on a given high
energy scale (e.g. some BSM model), and the aim is to implement a systematic procedure for getting the low-energy
theory. A typical example would be the Euler-Heisenberg Lagrangian. Systematic low-energy expansions are able to
obtain low-energy footprints of the high energy regime of the theory.

In the top-down approach the heavy fields are integrated out of the underlying high-energy theory and the result-
ing effective action is then expanded in a series of local operator terms. The bottom-up approach is constructed by
completely removing the heavy fields, as opposed to integrating them out; this removal is compensated by includ-
ing any new nonrenormalizable interaction that may be required. If the UV theory is known, appropriate matching
calculations will follow.

In this work we will discuss the integration of heavy fields in a wide class of BSM models, containing more that one
representation for scalars, with the presence of mixing. For early work on the subject, see Refs. [1, 2]. One problem
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NLO-EFT #0 : Tadpoles

for Green functions: given a one-loop Green function with N external lines carrying Lorentz indices µ j, j = 1, . . . ,N,
we introduce form factors,

Sµ1 ... µN =
A

∑
a=1

SaKa
µ1 ... µN . (42)

Here the set Ka, with a = 1, . . . ,A, contains independent tensor structures made up of external momenta, Kronecker-
delta functions, elements of the Clifford algebra and Levi-Civita tensors. A large fraction of the form factors drops
from the final answer when we make approximations, e.g. vector bosons couple only to conserved currents etc.
Requiring that all (off-shell) form factors (including external unphysical lines) are made UV finite by means of local
counterterms implies working in the Rξξ -gauge, as shown (up to two loops in the SM) in Ref. [75].

A full generality is beyond the scope of this paper, we will limit ourselves to the usual ’t Hooft-Feynman gauge and to
those Green functions that are relevant for the phenomenological applications considered in this paper.

4.1 Tadpoles and transitions

We begin by considering the treatment of tadpoles: we fix β h, Eq.(21), such that ⟨0 |H|0⟩= 0 [45]. The solution is

β h = ig2M2
W

(

β
(4)
h + g6 β

(6)
h

)

, (43)

where we split according to the following equation (see Eq.(37))

β
(n)
h = β (n)

−1 ΔUV
(

M2
W

)

+β (n)
0 +β (n)

fin . (44)

The full result for the coefficients β (n) is given in Appendix A. The parameter Γ, defined in Eq.(14), is fixed by the
request that the Z−A transition is zero at p2 = 0; the corresponding expression is also reported in Appendix A.

4.2 H self-energy

The one-loop H self-energy is given by

SHH =
g2

16π2
ΣHH =

g2

16π2
(

Σ(4)HH+ g6 Σ
(6)
HH

)

. (45)

The bare H self-energy is decomposed as follows:

Σ(n)HH = Σ(n)HH;UVΔUV
(

M2
W

)

+Σ(n)HH;fin . (46)

Furthermore we introduce
Σ(n)HH ;fin(s) = Δ(n)

HH;fin(s)M
2
W+Π(n)

HH;fin(s)s . (47)

The full result for the H self-energy is given in Appendix B.

4.3 A self-energy

The one-loop A self-energy is given by

SµνAA =
g2

16π2
ΣµνAA , ΣµνAA =ΠAA Tµν , (48)

where the Lorentz structure is specified by the tensor

T µν =−sδ µν − pµ pν , (49)
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Backup

A Appendix: β h and Γ

In this Appendix we present the full result for β h, defined in Eq.(43). We have introduced ratios of masses

xH =
MH
MW

, xf =
Mf
MW

(198)

etc. The various components are given by

β (4)
−1 = −∑

gen
(x2l +3x

2
d +3x

2
u)+

1
8
(12+2xH +3x2H )+

1
8
6+ c2

θ
xH

c4
θ

β (4)
0 = −

1
2
1+2c4

θ

c4
θ

β (4)
fin = −

1
4
afin0
(

MW
)

(6+ xH)−
3
8
afin0
(

MH
)

x2H −
1
8
6+ c2

θ
xH

c4
θ

afin0
(

MZ
)

+ ∑
gen

[

3afin0
(

Mu
)

x2u +3a
fin
0
(

Md
)

x2d +afin0
(

Ml
)

x2l
]

(199)

β (6)
−1 =

1
8
12+ xH
c2
θ

aφW +
1
8
(36+2xH +3x2H )aφW −

1
4 ∑gen

[

3(4au φ+4aφ! +4aφW −aφD)x2u

− 3(4ad φ−4aφ! −4aφW +aφD)x2d +(4aφ! +4aφW −aφD −4aL φ)x2l
]

+
3
16

(4aφ! +4aφW +aφD +8s2θ aφB −8cθ sθ aφWB)
1
c4
θ

+
1
32

(4aφ! −aφD)(12−2xH +7x2H )

−
1
32

(4aφ! +aφD +96c2θ aφ)
xH
c2
θ

β (6)
0 = −

1
8

[

8s2
θ
aφB +4(1+2c4θ )aφ! +4(1+2c

2
θ
+6c4

θ
)aφW +(1−2c4

θ
)aφD −8cθ sθ aφWB

] 1
c4
θ

β (6)
fin = 3afin0

(

MH
)

aφ xH −
1
4
afin0
(

MW
)

(18+ xH )aφW −
1
8
afin0
(

MZ
) 12+ xH

c2
θ

aφW

+
1
4 ∑gen

[

3(4au φ+4aφ! +4aφW −aφD)afin0
(

Mu
)

x2u −3(4ad φ−4aφ! −4aφW +aφD)afin0
(

Md
)

x2d

+ (4aφ! +4aφW −aφD −4aL φ)afin0
(

Ml
)

x2l
]

−
3
16

(4aφ! +4aφW +aφD +8s2θ aφB −8cθ sθ aφWB)
1
c4
θ

afin0
(

MZ
)

−
1
16

(4aφ! −aφD)afin0
(

MW
)

(6− xH)

+
1
32

(4aφ! +aφD)afin0
(

MZ
) xH
c2
θ

−
1
32

(28aφ! +12aφW −7aφD)afin0
(

MH
)

x2H (200)

We also present the full result for Γ, defined in Eq.(14). We have

Γ(4)−1 =−
1
8

Γ(4)0 =
1
8

Γ(4)fin =
1
8
afin0 (M) (201)

Γ(6)−1 =−
1
4
aφW Γ(6)0 =

1
4
aφW Γ(6)fin =

1
4
afin0 (M) aφW (202)

i.e. Γ= Γ(4)
(

1+ 2g6 aφW
)

.

B Appendix: Renormalized self-energies

In this Appendix we present the full set of renormalized self-energies. To keep the notation as compact as possible a
number of auxiliary quantities has been introduced.
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We also present the full result for Γ, defined in Eq.(14). We have

Γ(4)−1 =−
1
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Γ(6)−1 =−
1
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1
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1
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i.e. Γ= Γ(4)
(

1+ 2g6 aφW
)

.

B Appendix: Renormalized self-energies

In this Appendix we present the full set of renormalized self-energies. To keep the notation as compact as possible a
number of auxiliary quantities has been introduced.
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Example: H to AA

Backup

Definition The PTG scenario: any amplitude computed at O(gn g6) has a SM component of O(gn) and two dim = 6
components: at O(gn−2 g6) we allow both PTG and LG operator while at O(gn g6) only PTG operators are included.
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The S -matrix element follows fromEq.(128)when wemultiply the amplitude by the photon polarizations eµ(p1)eν(p2);
in writing Eq.(128) we have used p · e(p) = 0.
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Backup
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g3

16π2
(

T
(4)
HAA+ g6 T

(6),b
HAA

)

+ igg6 T
(6),a
HAA , (130)

where the dim= 4 part of the amplitude

T
(4)
HAA = 2s2

θ

(

∑
gen
∑
f

T
f
HAA ;LO+T

W
HAA ;LO

)

(131)

is UV finite, as well as T (6),a which is given by

T
(6),a
HAA = 2

M2
H

M
(

s2
θ
aφW+ c2

θ
aφB+ sθ cθ aφWB

)

. (132)

The T (6),b component contains an UV-divergent part. UV renormalization requires

T ren
HAA = THAA

[

1+
g2

16π2

(

dZA+
1
2
dZH+ 3dZg

)

ΔUV
]

, (133)

cθ = c
ren
θ

(

1+
g2

16π2
dZcθ ΔUV

)

, g= gren
(

1+
g2ren
16π2

dZgΔUV
)

(134)

and we obtain the renormalized version of the amplitude

T ren
HAA = i

g3ren
16π2

(

T
(4)
HAA+ g6 T

(6),b
HAA ;fin

)

+ igreng6 T
(6),a
HAA ; ren+ i

g3ren
16π2

g6 T
(6)
HAA ;div ,

T
(6)
HAA ;div = T

(6),b
HAA ;divΔUV

(

M2
W

)

+
M2
H ren

Mren

{[

dZ(4)H − dZ(4)MW + 2dZ(4)A − 2dZ(4)g

]

aAA− 2
cren
θ

sren
θ

dZ(4)cθ aAZ
}

ΔUV ,

T
(6),a
HAA ; ren = 2

M2
H ren

Mren
aAA , (135)
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