A 5 TS -w.fo'.jets+x.60fb'

Multi-core computing
in HEP

Benedikt Hegner
CERN

two T |ets + X, 60 b

Disclaimer:
| am showing only a very tiny part of the picture
(in particular no GPU goodies)

Outline

»two T |ets + X, 60 b

® Many cores and parallelism
(‘Power Wall')

® Ongoing R&D Efforts

® Memory Speed and Bad Programming
(‘Memory Wall')

® Summary

two T |ets + X, 60 b

The ‘Power WalbP

- Moores law alive and well!

by two T |ets + X, 60

1.E+07

1.E+06

¢ Transistors (in Thousands) '

1.E+05

1.E+04

1.E+03

1.E+02

1.E+01

1.E+00

1.E'01 T T T T T T T
1970 1975 1980 1985 1990 1995 2000 2005 2010

- Moore's law alive and well!

*7 »two T|ets + X, 60 1D

..but clock frequency scaling replaced by cores/chip

1.E+07
15 Years of exponential growth ~2x year has ended s

LE+00 ¢ Transistors (in Thousands)

® Frequency (MHz)
1.E+05 e Cores
1.E+04
1.E+03
1.E+02
1.E+01

°

‘o ® g
1.E-01 . . ; . : . .
1970 1975 1980 1985 1990 1995 2000 2005 2010

- Moore's law alive and well!

two 7 |ets + X, 60 1D

The reason is that we can't afford more power consumption

1.E4+07 _ _
Power is the root cause of all this

1.E4+06

¢ Transistors (in Thousands)
1.E+05 ® Frequency (MHz)

Power (W)

1.E4+04

® Cores

A hardware issue just became a

software problem

1.E+01 y—)

1.E+00 n V

1.E_01 1 | I | 1 | I
1970 1975 1980 1985 1990 1995 2000 2005 2010

Moore's:Law reinterpretea

two t|ets + X 60 b’

® Number of cores per chip will double every two years
® |nstruction parallelization (vectorization) increases

® (lock speed will not increase (or even decrease) because of
Power consumption:

Power «x Frequency®’

® [Need to deal with systems of tons of concurrent threads and
calculations

® |n GPUs that's reality already now

® \We can learn a lot from game programmers! (*)

(*) thanks to all of you who fund their “research™ by playing during office times ;-)

Average time to reconstruct TTBar MC (sec)

30

25

20

15

10

» TWO ©

It is

From 201 | to 2012

jets + X, 60 1b"

not an academic problem !

201 |

0 5 1

0 15 20 25 30 35 40
Average # of pileup events

Surviving in the short term (2012)

CMS offline software memory budget POSSibIe because Of OLII”
“embarrassingly parallel’ problem

~1.2 GB

Event specific data

Read only data

geometry,

magnetic field,

conditions and alignment,
hysics processes, etc

ko,:{"
%

Code

Shared common data

surviving in the short term (contd)

two]Lto+

Events/sec vs Number of Cores Events/sec/core vs Number of Cores
50.0 1.100
+ Measured Forked Ty o+ + + &
375 O Measured Separate Jobs P 0.825
' — Perfect Scaling v ' Tos

Events/sec

\.
+
+
Events/sec/core

25.0 0.550
+ Measured Forked
O Measured Separate Jobs
12.5 / 0.275
0 N 2 2 N 0 2 2 2 2
0 = 16 24 32 40 0 - 16 24 32 40
Number of Cores Used Number of Cores Used

Problem for current Grid infrastructure:
Not all Grid centres are prepared for
full allocation of a machine

CMS example

ots + X. 60 1b’

Multiple Processes Running Processes start to complete

AN /

® No requirements on code
quality, thread safety, etc

Merges Running
(All I/O on local disk)

® Qutput file merging Is the /
bottleneck in this approach

W CcPU

Stage Out to MSS

s

® However It br‘ings the | HC Multiple Processes Read from MSS
, " Write to local Disk 1

experiments through this year =

Merges on local Disk

25

o CcPU B MSSRead ! MSSWrite [l Disk Read
B Disk Write

Same with ATLAS

» 77 »two T |ets + X, 60 fb

Efficiency: job size

* |In order to compete in CPU efficiency with N single process
Athena jobs (assuming that we have enough memory for
those), we need to increase Athena MP job size

— Run one Athena MP job over N input files instead of running N
Athena MP jobs over single input file each

H] —&—
HP=-S5lowHerge —#—
HPF-FastHerge —5—

evt/sec/node

Ly

. é i i i i i i A
2 4 6 8 108 12 14 16 18 rerrerererr 1]
HProcs

https://indico.fnal.gov/getFile.py/access!contribld=7&sessionld=0&resld=0&materialld=slides&confld=4986

24 V. Tsulaia Nov-21, 2011

https://indico.fnal.gov/getFile.py/access?contribId=7&sessionId=0&resId=0&materialId=slides&confId=4986
https://indico.fnal.gov/getFile.py/access?contribId=7&sessionId=0&resId=0&materialId=slides&confId=4986

Framework Primer

two T |ets + X, 60 b

Experiment software follows the
concept of a ‘software bus’

yes
P
Output
Source b:i Event F:> Module
R il

PATH

~Survivin

»two T |ets + X, 60 1

o In the mid term

® Framework with the ability to schedule modules/
algorithms concurrently

® [ull data dependency analysis would be required
(no global data or hidden dependencies)

® [Need to resolve the DAGs (Direct Acyclic Graphs)
statically and dynamically

Input

Processing

O

Output

-i--l-

-l

l

-

Real-world example

+ X.601b’

g\ | Ree_Calo_Ph X
® Particular example taken from e s

| HCb reconstruction program

Brunel === e

® (ives an idea for the potential ——— v T
concurrency e = :
® ATLAS or CMS just don't fit ST

on a Slide... K_ pRec_Prot? Newtrals

Unfortunately it doesn't work too well

|ets Ufb

Blindly assuming full thread safety

E 20

>

S

§ 16

=

S

: |

5 8

: | | 1
- . : L Tracking muon findin; IW
3 ' ' |
3) ()
Zz 0 ; 05 10 15 20

Average time processing one event (sec)

Remember: tracking will become even worse with more with pile-up

Amdahl's Law

ots + X. 60 1b"
Amdahl's Law
20.00 —
P I
18.00 - |
/ Parallel Portion
16.00 / 50%
/ 75%
14.00 90%
/ 95%
12.00 /
Q.
3 10.00 /
o apsamm
w
8.00 / //
6.00 //
4.00 ’ Z
A
2.00 = _
0.00 |
~— N < [+=] (7] N < o« [T ~N e o o] o N < <=} @O
— (2] @O

Number of Processors

Maximum processing speed is limited by the serial part

~ Many concurrent events

»two T |ets + X, 60

® Need to deal with the tails of sequential processing
® [ntroducing Pipeline processing
® Never tried before in this context!

® [xclusive access to resources or non-reentrant
algorithms can be pipelined (e.g. file writing)

® Need to design or use a Q=
powerful and flexible i
scheduler

® Need to define the concept of
an “event context”

Model Result:

Assuming full reentrancy

o Max 10 events in paraliel
o Max 10 instances/algorithm

Mean ellapsed time per event [msec]. Max 10 instances/algorithm

2 40 All algorithms reentrant
o C

0 =

8 N \Theoretical limit

o 30:_ g t =1 / Nipread

© T 4

e & o T Max evts >3

< 25— Speedup up to ~30

e Max 2 events
/ 1 event* 2
| — e
Max 1 event
LT " Algorithmic parallel limi

A Speedup: ~7

10

| I llllllllllllllllllllllll Onethread

0 5 10 15 20 25 30 35 = classic processing (t,)
Maximal number of worker threads

M.Frank CERN/LHCb 16

Model Result Top 4.

Mean ellapsed time per event [msec]. Max 10 instances/algorithm

p

Average speedu

S
o

W
N

W
o

N
N

20

15

10

0 S 10 15 20 25 30 35

Max. 10 instances of top 4 algorithms

L

- e - e - $H - - - - - -

..

Illllllllllllll
[:

| I S T - llllllllllllllllllllllll

Maximal number of worker threads

M.Frank CERN/LHCb 21

Max 10 events in parallel

TOP 4 algorithms reentrant
with max 10 instances

o Cut 25 msec [4.3 %]
Theoretical limit

Max evis >3
Speedup up to ~30

Max 2 events
1 event * 2

Max 1 event
Algorithmic parallel limit
Speedup: ~7

One thread
= classic processing (t,)

Moving to implementations

LHC experiments and big labs
started concurrency forum (*) to
discuss and tackle problems

Development of functional N

components the experiments can
choose from

Straw Man Project Timeline

Collaborations have a huge
investment In ‘algorithmic’ code

based on their frameworks

Currently in ‘demonstrator’ phase

—

Adiabatic migration of algorithms

Ambitious, but needs to be there
iNn time for LHC re-start in 2015

(*) http://concurrency.web.cern.ch/

http://concurrency.web.cern.ch
http://concurrency.web.cern.ch

~ Writing thread safe data

»two T |ets + X, 60 1D

® All event state Is contained in an object accessed
concurrently by hundreds of objects

® How to make such data thread safe!

® [ransactional memory could be a solution!
® [reat memory access like DB transactions
® occ 4./ contains experimental support

o Future Intel CPUs will support it on HWV level
(starting with Haswell in 201 3)

VVhat's the problem!?

\ > T —»two Tjets + X, 60 fb"

memaory

- Serial result: x=12
CPU O writing

x=10

/ Parallel result: x=1 |
CPU 1
x=10

reading

VWhat are the solutions!

» 7 »two T|ets + X, 60 1D

Lock based transactional memory
=1 10 X=] 10
CPU O CPU1
CPUD CPU1
transaction{
try lock; commit P
lock; try lock; successful cnn;mit{
wait; time
X trasaction{ commit
X unsuccessful
unlock; try lock; commit{
lock ¥ was 10
¥ now 11
+x; repeat;
unlock; commit
successful
N g

Performance behaviour

»two T |ets + X, 60 1D

based on transactional memory in gcc 4.7

Execution
Time (s)
1,8 7

1,6

14 A

1,2 -

T- —T™
0,8 - — Lock

0,6

0’4 _/
0,2 -

0 I I I I I I I I I I
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Collision probability

plot by Audrius Pakalniskis
(CERN summer student)

\ 5 T3 -twot;cts+x.601b'

SIMD
(Single Instruction - Multiple Data)

SIMD nstructions

two tjets + X, 60 1b’

® Processors supportin’g Single Instruction, Multiple Data (5IMD) can execute
one instruction on multiple data

® Successive standards of SIMD Instruction sets exist (MMX, SSE, SSE2, ...,
AV X) with ever increasing register size

® SSE2 .
® Basically all CPUs since 2003 128
® Jwo double precision floating point values 5
* AVX 8 I Pa.rallelism growth:
® Since 201 | (Intel Sandy Brldge)) growing dramatically over time.

® Four double precision floating point values : s 3 . = -

1992
2004 -

http://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions/
http://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions/

SIMD example

»two T |ets + X, 60 b

Just an ‘academic’ example:

double* x = new double[ArraySize];

double* y = new double[ArraySize];
for (size t j = 0; j< iterations ; j++)
{

for (size t 1 = 0;

{

1 < ArraySize; ++ 1)

// evaluate polynom
y[i] = a_3 * (x[1] * x[1] * x[1i])
+a 2 * (x[1i] * x[i])
+ al * x[1] + a 0;

}

»two T |ets + X, 60 b

SIMD example

Just an ‘academic’ example:

double* x = new double[ArraySize];

double* y = new double[ArraySize];
for (size t j = 0; j< iterations ; j++)
{

for (size t 1 = 0; 1 < ArraySize; ++ 1)

{

// evaluate polynom
y[i] = a 3 * (x[1] * x[1] * x[1i])
+a 2 * (x[1i] * x[i])
+ a1l * x[1] + a 0;

}

+
gcc4.6 and -ftree-vectorize

Runtime Comparison Double Precision

50

40}

Runtime [ms]
3

N
(=]

10}

—* SSE4.2

w—a Scalar

o

%

1000 2000 3000 4000 5000 6000 7000 8000 9000
Element Number [1]

SIMD example

two T |ets + X, 60 b

Runtime Comparison Double Precision

50
¢ e 9 . . AYX
Just an ‘academic’ example: e s
£l
double* x = new double[ArraySize]; 2
double* y = new double[ArraySize]; 5
e i
for (size t j = 0; Jj< iterations ; J++) r,///“’///rffwfi#’*afff‘

001000 2000 3000 4000 5000 6000 7000 8000 9000

{
. Element Number [1]
for (S1 Ze—t 1=20 i1 < Arrays lz€; t+ 1) 60 Runtime Comparison Single Precision
{ % SSE4.2
// evaluate polynom — A
. . . . 50 *—* Scalar
yl[i] = a 3 * (x[1] * x[1] * x[1])

+ a_2 * | X[l] * X[l])
+ a l * x[i] + a 0;

)
+
gcc4.6 and -ftree-vectorize) A

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Element Number [1]

Runtime [ms]
8 8

N
o

~_lurning that into reality

A s TS -tworjets+x.601b'

Real World Example: Vertex Clustering ﬂ("

® Part of the CMSSW Reconstruction software

® Tracks are the input and the amount and location of primary vertices
along the Z-Axis is computed using the Deterministic Annealing
algorithm

= Nested loops over tracks and vertices have to be performed many
times — ldeal for vectorization

®= This clustering step represents 3% of the overall reconstruction runtime

Particle Tracks Particle Tracks
Vertex 2 | Vertex 1
- O O >
Z / / 0 Beamline +Z
8 1st March 2012 | Thomas Hauth - Entwicklung und Evaluierung von automatischer Vektorisierung in CMS CERN | EKP

Version Runtime for 50 Events [s] Ratio [1]
Regular 26.64 1.0
Vectorized 19.96 0.74

Vectorized + vdt math 11.46 0.43

L.ong-term solution

»two T |ets + X, 60 fb

® \What do we do once the parallel scheduling of modules doesn't work
any more!

® \We need to split up our modules and algorithms into smaller pieces
(‘kernels’) that run parallel in the CPU or on GPUs

® [racking will be the most important piece
e |/O will rank second

® [Many competing technologies around:

N
o

o MIC, GPGPU, OpenCL, CUDA, ..

—
(e}

® 50 what’s the potential? |

| lEI::tr:r and ||
Tracking |jmuon finding

-
N

® |etshave alook at
what people already did...

I

I

L

C L

Number of concurrently running modules

o

o

0,5 1,0 1,5 2,0

Average time processing one event (sec)

~Parallel Tracking Status

+ X, 60 1b

® ATLAS already made some efforts
® [ound a potential for an improvement by an order of magnrtude
® |mplemented seed finding for Level-2 trigger
® Raw data pre-processing for Level-2 trigger

® ALICE trigger using simplified GPU-based tracking

two T |ets + X, 60 b

The Memory Wall

Memory Speed Development

1000

e Lommormseorme——— -

Processor-Memory
Performance Gap

P S — —

More than a factor 100 !

I'he Memory Vvall

»two T |ets + X, 60 1

32kB L1 32kB L1
Data Cache Inst. Cache

32kB L1 32kB L1
Data Cache Inst. Cache

® Processor clock rates have been
Increasing faster than memory m mm= m

clock rates

® |atency In memory access Is often w

the major performance issue in
modern software applications

Cache Latency Dlt-tecnfow

4
Core i7

3
Core 2 (45nm)

® |arger and faster “on chip” cache Main memory:
memories help alleviate the 200-300 cycles

problem but does not solve it Mh

0 10 20 30 40 50

Core 2 (65nm)

Nanoseconds (lower is better)

HLu HL2 B

Caching

»two T |ets + X, 60 fb

® (aching is - at distance - no black magic

® Usually just holds content of recently accessed memory

locations
Cache

Line ||I|IIIIII|||||I||IIIII||I|||||I||II|II),II||II|II||I|||||I||II
byte

® (aching hierarchies are rather common:

® 32KB L1 I-cache, 32KB L1 D-cache per core
» Shared by 2 HW threads

" 256 KB L2 cache per core
» Holds both instructions and data
» Shared by 2 HW threads

® 8MB L3 cache
» Holds both instructions and data
» Shared by 4 cores (8 HW threads)

Very tiny compared to main memory!

»two T |ets + X, 60 fb

Dominated by data movement NOW!

¢¢

We use only 15% of availiabl

ation

“flops
60% “active’

Stalls composition

— & L2 miss impact: 44.172%

—3 L2 hit impact: 21.537%

— LI dtlb miss impact: 3.987%

———3 LCP stalls impact: 1.216%

Store-fwd stalls impact: 29.088%

Loads blocked by unknown
address store impact: 80.790%

Loads overlapped with stores
impact: 12.310%

0 Loads spanning across cache
— line impact: 6.900%

Instruction type (ITLB miss rate = 0.01%)

Loads: 25.103%

_,—EI Stores: 13.753%

[e ———11 Branches: 16.462%

O u b I e—D SIMD Computational: 0.000%

— Other: 44.682%

Mispredicted branches = 0.01486
0.100

that were mispredicted.

0.050

This value is the fraction of branches

Where are we now!

\ 5 T3 -twot;cts+x.601b'

- SIMD ILP HW THREADS CORES SOCKETS

MAX 4 A
TYPICAL | 2.5 1.4

HEP 1 0.55

Thanks to Andrzej Nowak for the table
http://indico.cern.ch/getFile.py/access?contribld=2&resld=0&materialld=slides&confld=186554

http://indico.cern.ch/getFile.py/access?contribId=2&resId=0&materialId=slides&confId=186554
http://indico.cern.ch/getFile.py/access?contribId=2&resId=0&materialId=slides&confId=186554

| ittle: Reminder - vtable

»two T |ets + X, 60 1D

The virtual table tells which code to execute when dealing
with polymorphism

RecoParticle Method Implementation
hits() RecoParticle::hits
RecoParticle::p4

Implementation
Muon::hits

RecoParticle::p4

[I'he death for any cache

A\ T stwo T|ets + X, B0 1D

et’s consider the following code and it's first execution:

for (DaughterIt it = m daughters.begin();
it != m daughters.end(); ++it)
{
m pd4.Add(it->p4());
}

_I'ne death for any cache

sjets + X, 60 1b

Create lterator

\

for (DaughterIt = m daughters.begin();
it != m daughters.end(); ++it)
{
m pd4.Add(it->p4());
}

_I'ne death for any cache

sjets + X, 60 1b

for (DaughterIt it = m daughters.begin();

it != m daughters.end(); ++it)
{
m_p4.Add((it3>p4());
}

vtable of lterator

[I'he death for any cache

G o v » TWO T]C“S + X, 601D

for (DaughterIt it = m daughters.begin();
it != m daughters.end(); ++it)

{
m p4.Add(i 4());

}

vtable of object
+ object

[I'he death for any cache

G o v » TWO T]C“S + X, 601D

for (DaughterIt it = m daughters.begin();
it != m daughters.end(); ++it)

{ .
m_p4.Add(lt")‘)"f — method code

}

[I'he death for any cache

G o v » TWO T]C“S + X, 601D

Fetch into Cache
for\ (DaughterIt it = m daughters.begin();
it != m daughters.end(); ++it)

{
(m_p4).Add(it->p4());

}

[I'he death for any cache

G o v » TWO T]C“S + X, 601D

for (DaughterIt it = m daughters.begin();

it != m daughters.end(); ++it)
{
m_p4 (Add)(it->pd());
}

vtable + method code

[I'he death for any cache

\ > 77 —»two T|ets + X, 60 1D

for (DaughterIt it = m daughters.begin();
it != m daughters.end(); ++it)

{
m p4.Add(it->p4());

}

=

every ugliness inside
the method code

two T |ets + X, 60 b

That were quite a few cache misses,
for a rather simple operation:

m_pX += X
m_py *=y

dentitying a way out

» 77 2 two T |ets + X, B0 fb

® Cache misses are evil
® Put data that are used together closer together
® This usually crosses object boundaries
® But only rarely collection boundaries
® “Arrays of Structs” vs. "Structs of Arrays”
® A particle collection becomes a collection single px, py, pz, ... vectors
® vtables cause a good fraction of cache misses
® |n principle every conditional statement spolls branch prediction and caching
® Design your software around the most efficient data structures
® “Data Centric Programming”

® Doesn’t data locality contradict OOP principles and requirements?

%&*1& M

But 1s that reaH}/ such a big problem!

» 7 »two T|ets + X, 60 1

® OOP as dreamed of in the books

® [t combines data and algorithms into a single entity

® [t ensures that the developer does not need to code up the control flow explicitly.
® We already violate this with the software bus model

® [he stored objects are mainly only data

Real dataflow Apparent dataflow Data T1

® We define the control flow explicitly «—

/ \ Data T1

® Data transformations happen in modules Data T2, T3
<

Algorithm

Transient Event| DataT2

Data Store Data T4
<

® ‘Deprecated’ FORTRAN-legacy might
turn out to be not so bad after all... _ Y,

VWhat's ahead of us!

» 77 2 two T |ets + X, B0 fb

® We have to choose with more thought when to follow which
programming paradigm

® Many identical data chunks & high throughput => data oriented

® Small number of objects & heterogenous data => object oriented

® For reconstruction we have to redesigh our data formats to become
even dumber

® [xpert operation !

® Helps with auto-vectorization as well!

® Analysis and other cases much more heterogenous
® We need a‘data-to-smart object” translation layer. But where!!

® A |ot of trial-and-error R&D needed

Situation Summary

v —»two T |ets + X, 60 fb

® [here are limits to “automatic’” improvement of scalar
performance:

® Power Wall: clock frequency cant be increased any more

¢ Memory Wall: access to data is limiting factor

® [xplicit parallel mechanisms and explicit parallel programming
are essential for performance scaling

® Various R&D efforts going on these days

® [xciting times If you are interested in programming!

~ Challenges Summary

v —»two T |ets + X, 60 fb

Process multiple forked jobs in parallel

(~ now)

Run modules and events concurrently

(~2014)

Split our algorithms into smaller chunks which can be run in
parallel, potentially on co-processors (e.g. GPU)

(~2014)

VWe have to start using Single-Instruction-Multiple-Data (SIMD)

(‘as soon as

We have to

possible)

earn how to properly separate the

“object world” from the “data world”
(ILD / Belle Il / SuperB ?)

2013 . 2014 2015 2016 2017 . 2018

Low Lumi Run Shutdown for High Energy & Lumi Run Shutdown for
(8TeV) LHC-Upgrade (13 TeV) S-LHC preparations

v »two T |ets + X, B0 fb

That’s it :-)

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”
HEY! GET BACK >

TO WORK'

| xked

