

KATRIN experiment – technologies at the cutting edge

Science Colloquium "First Neutrino Mass Result from KATRIN" KIT, FTU Aula, September 16, 2019

S HERE REAL PARTY

Guido Drexlin, Institute of Experimental Particle Physics ETP, Department of Physics

- KATRIN: a high-tech instrument
- source technologies
- spectrometer technologies
- conclusion

KATRIN – A HIGH TECH INSTRUMENT

2

KATRIN overview

world's most precise scale:

- measure neutrino mass down to 0.2 eV (90% CL)
- improve statistics / reduce systematics : by factor 100

- continued R&D works to further improve science reach

KATRIN overview: 70 m long beamline

KATRIN challenges – particle intensities

5

7

SOURCE TECHNOLOGIES

closed tritium cycle at 40g/d throughput

a closed tritium cycle of 40g/day

tritium technologies for high-purity tritium at unprecedented throughput

Laser Raman spectroscopy for hydrogen isotopologues

Laser Raman (LARA) spectroscopxy

- sampling of hydrogen isotopologes $\Delta t < 60$ s for 0.1% precision

source stability: overview

injection pressure stability

Ioop system: exceeds specifications for D2, excellent pressure stability ⇒ stable ρd

beam tube temperature

■ beam tube cooling system: exceeds specifications, excellent temperature stability ⇒ stable column density pd in source tube

a lage-scale cryotrap

cryogenic pumping section CPS:

- 3K section with Ar-frost layer \rightarrow > 10⁷ reduction of HT/T₂

SPECTROMETER TECHNOLOGIES

electrostatic retarding spectrometers

electrostatic retarding spectrometers

spectrometer transport - the first few thousand km

the final few km

electrostatic retarding spectrometers

20 Sept. 16, 2019 G. Drexlin – World of Neutrinos and KATRIN

Precision electromagnetic layout – inner electrode

large inner electrode system in the spectrometer

Precision electromagnetic layout Karlsruhe Institute of Technology precision compensation of earth magnetic field **EMCS** earth field compensation LFCS low-field fine-tuning main spectrometer vessel Ø = 12.7 m a large Helmholtz coil system for fine-shaping of low-B-field region

a large aircoil system around the spectrometer to fine-tune magnetic flux-tube no background from cosmic muons and environmental gammas

KATRIN – a unique instrument at work (following talks)

KATRIN – a bona fide technology driver

neutrino mass measurement only possible due to cutting-edge technologies

