

The 2019 KATRIN neutrino mass campaign

Susanne Mertens Max Planck Institute for Physics & Technical University Munich KATRIN symposium, KIT, September 2019

KATRIN neutrino mass campaign #1 (KNM-1)

- First ever high-activity tritium operation of KATRIN
- April 10 May 13 2019: 780 h (~4 weeks)
- high-quality data collected **2 million electrons**
- ✓ First neutrino mass result ☺

This talk: What does it take to extract a high-quality data from KATRIN ?

The basic idea of KATRIN

high-luminosity tritium source

high-resolution spectrometer

 \rightarrow Monitoring and calibration are of key importance for KATRIN

 \rightarrow Monitoring and calibration are of key importance for KATRIN

Gaseous tritium source

Circulation of tritium gas in closed loops

- tritium gas density: 22% of nominal (burn-in phase)
- high isotopic tritium purity: 97.5%
- high source activity:

2.45 · 10¹⁰ Bq (24.5 GBq)

Gaseous tritium source

Circulation of tritium gas in close

4.9 g/day

- tritium gas density:
- high isotopic tritium purity
- high source activity:

Monitoring and characterization of source

MS scan

Plasma Potential Control

Detailed characterization measurements prior to data taking

- Optimization of coupling of rear wall to source plasma
- Optimization of homogeneity of plasma potential

Determination of the gas density

Regular calibration of gas density

• High-intensity beam of mono-energetic electrons

1.0

0.8

Monitoring source composition

Laser Raman System monitors isotopologues

• High purity established (97.5 %)

 D_2

HT

• High stability of concentration (< 0.5% / day)

Τ,

DT

Monitoring the activity

The basic idea of KATRIN

high-luminosity tritium source

high-resolution spectrometer

The basic idea of KATRIN

high-luminosity tritium source

high-resolution spectrometer

Scanning Strategy

- Idea: count electron as a function of retarding potential
- ... but at which retarding potentials and how long at each potential?

Scanning Strategy

Measurement time distribution

- \succ optimized to maximize v-mass sensitivity
- interval: $E_0 40 \text{ eV}$, $E_0 + 50 \text{ eV}$
- # HV set points: 27
- scanning time: 2 hours
- Number of scans: 27

18620

endpoint

 β -decay

spectrum

background

18600

region

Scanning Strategy

Measurement time distribution

- > optimized to maximize v-mass sensitivity
- interval: $E_0 40 \text{ eV}$, $E_0 + 50 \text{ eV}$
- # HV set points: 27
- scanning time: **2 hours**
- Number of scans: 274
- **\succ** One β -decay spectrum for each scan

 10^{1}

Background characterization

20% of measurement time above the endpoint

- Precise determination of background rate distribution
- Exclude retarding-potential dependence of background (slope)

High voltage stability

High-precision monitoring of High Voltage (HV)

- Short term (seconds) HV stability: < 20 mV
- Long-term (days) HV stability: < 20 mV/day

Monitor Spectrometer

Detecting electrons

148-pixel Si-PIN detector detects electrons

- 117/147 (79%) of all pixels used
- high detection efficiency (90%)
- negligible retarding-potential dependence of efficiency

>One β -decay spectrum for each pixel

The tritium spectrum

32058 β -decay spectra

- for each detector pixel
- for each scan

Task of "fitting" teams

- combine spectra in a smart way
- infer physics parameters
- estimate uncertainties
- see next talk

- Students and senior scientists from all over the world @ KIT
- Highly motivated team of shifters, technical staff, data analysts
- Special thanks to Dr. Magnus Schlösser for a great coordinating of the data taking

People

Thank you for your attention

Prof. Dr. Susanne Mertens Max Planck Institute for Physics & Technical University Munich

Scanning Strategy

Measurement time distribution

- optimized to maximize v-mass sensitivity
- interval: $E_0 40 \text{ eV}$, $E_0 + 50 \text{ eV}$
- scanning time: 2 hours
- HV set points: 27
- Number of scans: 274
- alternating up- / down- scans

Basic measurement idea Integral beta decay spectrum 60 Model Count rate [cps] Measurement 0 18400 18450 18550 18500 18600 Retarding energy [eV] β-decay ALL DESTENDED TO

The challenge

Neutrino signature is a small spectral distortion

