Status of CORSIKA 7

Tanguy Pierog

D. Heck, M. Reininghaus, R. Ulrich and with the help of many CORSIKA users

Karlsruhe Institut of Technology ,Institut für Kernphysik, Karlsruhe, Germany

CORSIKA Workshop 2020
June the 22nd 2020

Outline

- Introduction
- Release 7.74
 - Model update
 - New features
 - Bug-fixes
- Future developments

CORSIKA 7 benefit from the tests done for CORSIKA 8. CORSIKA 7 still updated until CORSIKA 8 is fully operational.

Introduction

Origin

30+ years of development ...

- Reminder: COsmic Ray SImulations for KASCADE
- → 1989 : original design optimized for vertical showers on a flat array detector using monte-carlo technique
- **→ 1994<** : extension to different type of experiments
 - Cherenkov, fluorescence light, inclined showers, ...
- → 2010< : extension to new type of simulations</p>
 - cascade equations, parallelization, different media ...

Technicalities

source code :

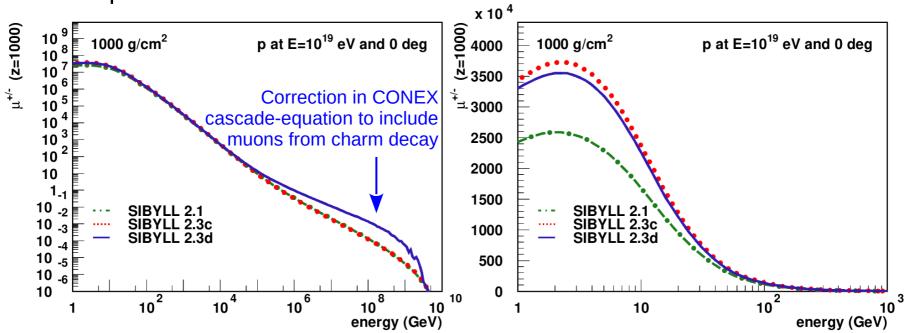
- → ~ 83 200 lines (without external programs) ~ 300 routines
- → optional code : ~ 50 preprocessor options to be chosen during installation with ./coconut
- program language (portability): Fortran 77 / 90 + some few C-routines

steering input :

- free format with key words + parameters
 - ~ 100 key words

documentation:

- physics: FZKA 6019 (1998)
- Webpage (documentations): https://www.ikp.kit.edu/corsika/


availability:

- download from web : https://web.ikp.kit.edu/corsika/download/
- Access by registration to our new mailing list (by email)
- → Last release : v7.7400 (27.05.2020)

Release v7.7400

Model Updates

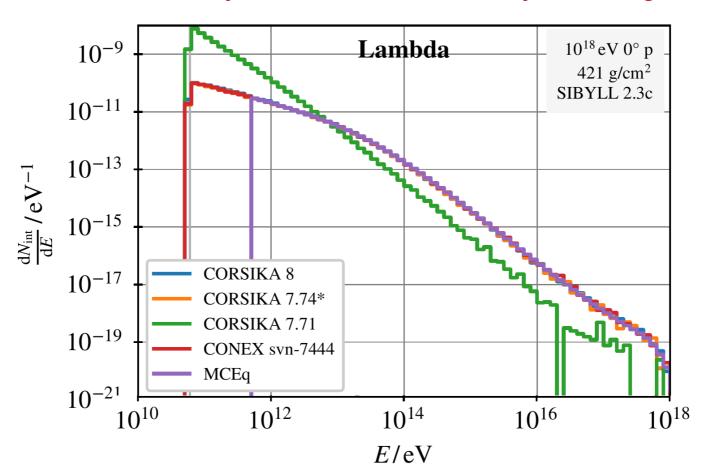
- Sibyll 2.3d (see talk by F. Riehn)
 - \blacksquare New version with updated π^0 production (~5% less muons)
 - Updated Kaon cross-section

- Update interface (compilation) with FLUKA 2020
- Other models
 - Update to come for EPOS (3) ... may be for QGSJETII (III) ?
 - → Included in CORSIKA 7

New Features

Technical improvements

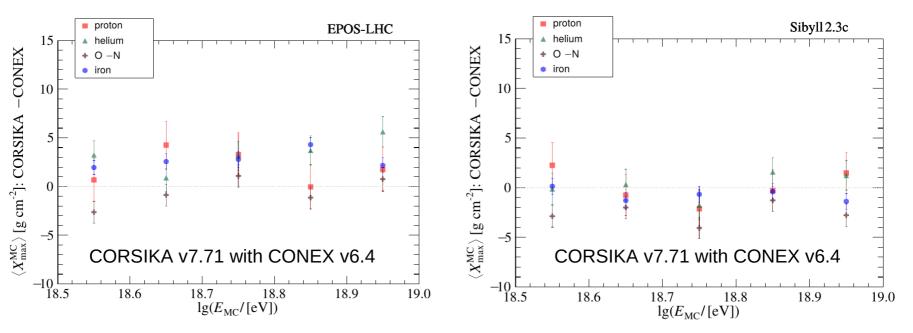
- → Add MWEIC keyword to select one of the weight in MULTITHIN with COASTUSERLIB and possibly keep a normal (unthinned) output.
 - Thinned shower for radio but unthinned for particles
- Make the extended mass range for CONEX+EPOS optional to save memory
 - Primary mass up to 250 nucleons but RAM>2GB
- Improve compatibility between MPI and MULTITHIN
 - Use a different random number sequence for all thinning definitions on the different cores


External updates

- Update of Bernlöhr package to version 1.61
- New monthly South Pole atmosphere parameters for IceTop added

Bug-fixes

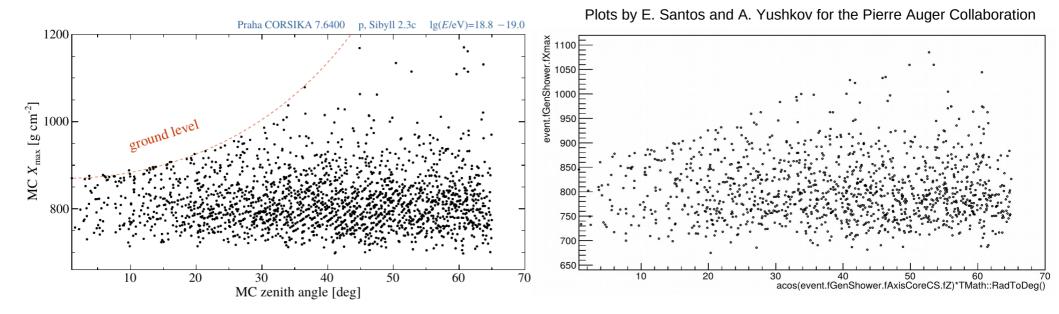
- Comparing CORSIKA 8 with CORSIKA 7 and CONEX
 - for EPOS and SIBYLL the decay length of strange baryons was not calculated


Only interactions on no decay for strange baryons!

Bug-fixes

Comparing CORSIKA 7 and CONEX

- Update CONEX to version 7.5 with improved compatibility with CORSIKA
 - same lambda treatment in QGSJETII (no interaction)
 - same target nucleus selection than in CORSIKA for SIBYLL
 - bug correction for φ direction in Preshower interface
 - consistent version of Sibyll2.3x in CONEX and CORSIKA!



Plots by E. Santos and A. Yushkov for the Pierre Auger Collaboration

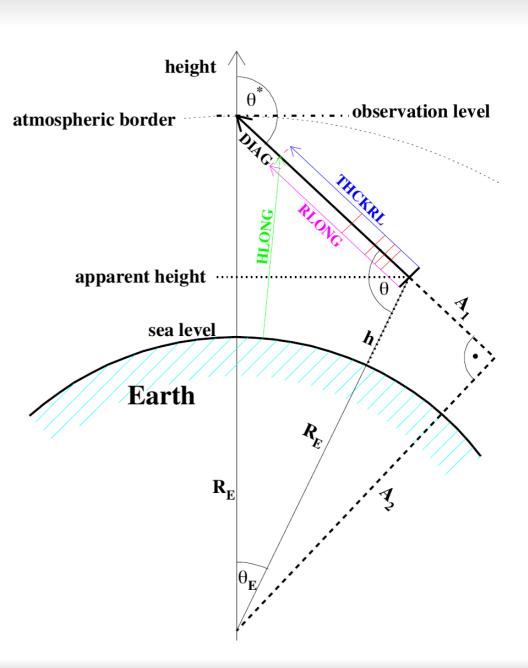
Bug-fixes

Extensive tests by other groups

Bugs in SLANT for the binning of the longitudinal profiles (all) and in counting of neutral (only) particles for upward (only) going showers

- Corrections to optimize MPI usage with CoREAS
- Change format for longitudinal energy deposit in vertical option to get correct depth values in the longitudinal profile.
 - This may give problems in connection with some long-file reader

Future developments


Upward going showers

Original design

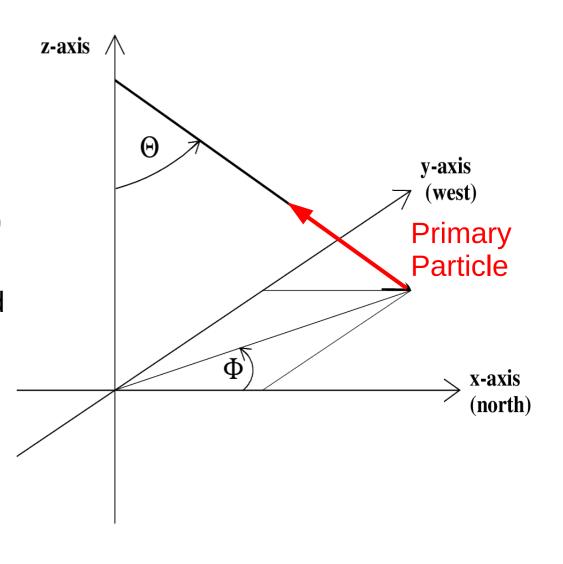
- Longitudinal profile only
- Usual CORSIKA geometry used

Problem

- Observation level at the top of the atmosphere
- No particle can be recorded at observation level (even with COAST)

Upward going showers

Original design


- Longitudinal profile only
- Usual CORSIKA geometry used

Problem

- Observation level at the top of the atmosphere
- No particle can be recorded at observation level

Solution

- Use geometry of downward going showers but put the primary at a different point with reversed momentum
- Under development ...

Summary

- CORSIKA 7 is still alive and take advantage of CORSIKA 8 development
 - CORSIKA 7 will be maintained until CORSIKA 8 will become the new standard
 - Important corrections released in 7.74
- But no major change expected except
 - → New hadronic models to come (EPOS 3, ...)
 - Upward going showers fully functional (particles at ground)
- Tests from the community always useful and welcome!

CORSIKA 7 benefit from the tests done for CORSIKA 8.

CORSIKA 7 still updated until CORSIKA 8 is fully operational.