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High-energy neutrino detection (>10/eV)
only possible through radio detection

= Science case: E.g. GZK neutrinos -> cosmic ray

composition and source evolution see ASTR02020 white papers 1903.04334 and 1903.04333
. . 10_6 F
= Low flux and small cross-section of neutrinos - neutrino spectrum

require huge instrumented volumes

= Optical techniques (e.g. IceCube) become cost
prohibitive

= Solution: radio technique
= Large volumes at no cost: Antarctic ice
= |ce transparent to radio waves (L ~ 1km)

= A single radio station has 1km?3 effective
volume (comparable to IceCube)
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Experimental status PR

= Proof-of-concept with two pilot arrays (ARA, ARIANNA)

= “Mid scale” (= sensitive enough to potentially measure
the first neutrino with radio)
= RNO-G (Greenland) under construction -
= ARIANNA-200 (Moore’s Bay) planned, SOP Nov. 2021

= Large scale
= Radio detector integral part of IceCube-Gen2 to extend
IceCube’s sensitivity to higher neutrino energies

= SOP ~2030
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Radio Emission of Inlce Particle Showers

= Askaryan effect: Time varying negative charge excess in the shower front

= Macroscopic: Longitudinal current

= Microscopic: Acceleration and creation of charge

= Cherenkov-like time compression effect
= Shower is faster than its emission

= Constructive interference at the Cherenkov
angle

= |nice: arccos(1/n) = 56 deg
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Current state-of-the-art in calculating radio emission

. . . . . 6 EM showers, Esp = le+16eV @ = 58.8°
= Microscopic shower simulations in X0 — o
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homogeneous ice (using ZHAireS) S S
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= Semi-analytic formalism to calculate emission £ o000
for arbitrary charge-excess profiles o 15 £ 0.5
= Agrees within 3% with full MC simulation S Y _0.10
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Current state-of-the-art in calculating radio emission

Microscopic shower simulations in
homogeneous ice (using ZHAireS)

Semi-analytic formalism to calculate emission
for arbitrary charge-excess profiles

= Agrees within 3% with full MC simulation
Alvarez-Muiiiz et al., Phys. Rev. D 101, 083005

= Precise calculation of LPM showers

Full end-to-end (from neutrino interaction to
detector) simulation codes exist

= e.g. NuRadioMC
C. Glaser et al., Eur. Phys. J. C (2020) 80:77

So far: Calculations assumed medium with
constant index of refraction
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Our Requirements

= Most common event types
= Shower simulation in homogeneous medium (e.g. ice

with n = 1.78) 1
= jnitial neutrino energies up to ~102°eV IOTELLL= = "
= Propagation of radio signals through arbitrary 3D I
density/index-of-refraction profiles ",T" """"""
= e.g.n(z) =1.78 — A exp(-z/B) deep 'Cel
" but also
= Shower development itself also in medium,with
changing density Uy
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: from ARg
Hard requirements YA2018 brain storming ooy
Ing

Support of dense media such as ice, water, lunar regolith, ...

= Do we need to implement additional interactions that are only relevant for dense media? E.g. tau propagation,
dE/dX for muons, LPM effect?

= Does the medium need to couple back to simulation parameters such as low-energy cutoffs?

Support of arbitrary medium configurations, including transitions from air to dense media or dense media
to vacuum (at least medium properties as a function of height, better arbitrary 3D medium configurations)

Medium model including refractive index profile, and possibility to do ray-tracing on the basis of this in
both air and dense media

= Additional properties needed? Humidity? Temperature?

Direct interface to the tracking of each particle in the shower simulation with bi-directional communication
= E.g. readjust step size in particle tracking

= E.g. readjust thinning level of important/unimportant particles or even throw away particles that are not relevant
for radio emission

= E.g. modify particle properties due to atmospheric electric fields

Simple interface to inject arbitrary particles (including their energy, momentum) and possibly specify their
interactions to start a shower (“the world’s dumbest event generator”)

Global coordinate system that supports curvature of Earth (anyway planned, adaption from Offline)
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from AR
Very useful features A2018 brain sty
Ing

= |nspect particle cascade at arbitrary observation planes, e.g. to calculate drift velocities on the fly,

= |n general a very flexible adjustment of thinning
= First interactions are very important -> low thinning
= Medium energy interactions are less important -> high thinning
= Low energy interactions are important to correctly model coherence -> low thinning

= Possibility to simulate air showers induced by upgoing neutrinos (from the Earth, mountains, ...)
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from ARE
° ° NA .
Wishlist #018 brain stormjpg meeti
Ing

= Retain information on particles at rest -> ionization in medium (relevant for RADAR reflections,
low-frequency radio emission)

= Simulate ‘very’ low energy particles (keV scale) and interaction with atmospheric electric fields
relevant for thunderstorm studies - in general allow interfacing of additional interaction models

for particles/energy ranges not treated by existing models

= Simulate particle oscillation (e.g. neutrino oscillation or strong oscillations such as K-short -> K-
long). l.e., in general provide the possibility to change the type of the particle during propagation;
this could be implemented in form of a propagation modules.

= Save state of simulation at any stage (e.g. a specific height/atmospheric depth). Then be able to
resume simulation with e.g. modified density profile or just with different random seeds
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Implementation of Radio Modules

= Radio part should be modular in itself, i.e. decouple

= Emission calculation (e.g. ZHS vs. endpoints)

= Signal propagation
= Straight lines (for air showers/constant density)
= Ray tracing
= Full FDTD propagation?

= Receive module
= Add emission from all particle tracks (as right now in CoREAS)
= Keep track of incoming direction of signal -> efield in angular bins
= On-the-fly convolving with directional antenna response
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