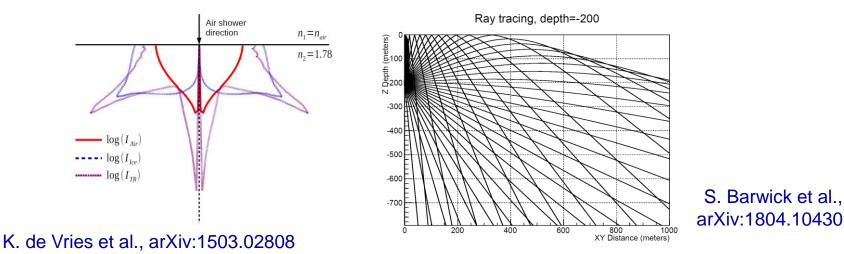


Radio-emission calculations in CORSIKA 8

Tim Huege (Karlsruhe Institute of Technology & Vrije Universiteit Brussel)

KIT - The Research University in the Helmholtz Association

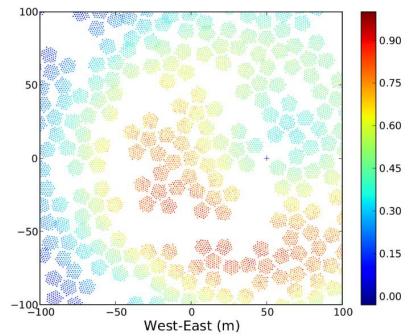
Full Monte Carlo simulations of radio emission



- CORSIKA7 with the CoREAS plugin
 - COAST interface from Fortran to C++
 - Calculate radio emission for e+/e- from individual track segments
 - Endpoint formalism
 - Fully MPI-parallelized
 - Monolithic CORSIKA7 code is not very flexible
- AIRES modified to ZHAireS
 - Calculate radio emission for e+/e- from individual track segments
 - ZHS formalism
 - Also limitations arising from AIRES design
- The existing codes have served us well, but we are running into severe limitations.

Limitations of CoREAS in CORSIKA 7

- the atmosphere is too limited, need transition to dense media
 - in particular for in-ice radio detection of neutrinos


- in general, the geometry needs to be more flexible
- need refraction during wave propagation in refractive index gradients
- computation times can be very long (many antennas)
 - could be overcome by GPU parallelisation

Simulations for very dense antenna arrays

~70,000 dual-polarized antennas within 750 m diameter

TH et al., ARENA2016 conference, arXiv:1608.08869

Implementing radio in CORSIKA8

- We need radio in CORSIKA8 sooner rather than later
- The basic framework of CORSIKA8 is ready to start implementing
- Several aspects to come up with a usable code
 - A radio emisison "process" interfaced to existing code (see Remy's talk)
 - An electromagnetic interaction model
 - A magnetic field model and its influence on particles
 - A defined output format (CoREAS and ZHAireS have been using HDF5)
 - A defined input format (configuration files? Python interface? ...)
 - A decision on a parallelization framework (should accomodate multiprocessor, multi-node, and GPU parallelization)
 - Porting of existing endpoint and ZHS formalisms (easy)
- So far, many of these aspects were not considered pressing, but for the radio community to make progress we need to decide on these soon!

Envisioned implementation of radio

- Radio part should be modular in itself, i.e. decouple
 - Emission calculation (e.g. ZHS vs. endpoints)
 - Signal propagation
 - Straight lines (for air showers/constant density)
 - Ray tracing
 - Full FDTD propagation?
 - Receive module
 - Add emission from all particle tracks (as right now in CoREAS)
 - Keep track of incoming direction of signal -> efield in angular bins
 - On-the-fly convolving with directional antenna response

Summary

- The radio community heavily relies on simulations
- The next-generation experiments run into limitations of CORSIKA7
 - in-ice neutrino detection: atmosphere too limited
 - dense arrays: computing times too long
- We should start with radio implementation in CORSIKA8 now, this will require many decisions that were so far postponed.