
Design Considerations for Radio in CORSIKA8
Presented at CORSIKA Cosmic Ray Workshop

Remy L. Prechelt

June 24, 2020

The “Now”

Current state of radio emission modeling for particle showers:

• Multiple formalisms (ZHS=>ZHAireS, Endpoint=>CoREAS) across multiple tools
(Aires & CORSIKA7).

• Typically only supports downgoing showers for standard ground-based detectors.

• Hard to modify and extend for experiments that don’t perfectly fit the design
assumptions. Collaborations may have to hack or patch modifications that are fragile
and bug-prone!

• Not designed for simulating showers in other media (ice, regolith) and do not support
custom environments (i.e. multiple media)

1/13

Example of Issues of Radio Simulation Ecosystem (ANITA/PUEO)

Image: Dana Braun, Wash. U.

Concept

Cosmin Deaconu (UChicago/KICP) ANITA ARENA16 4 / 26

2/13

The “Future”

Goals for CORSIKA8:

1. We need to design the radio emission module to take full advantage of the flexibility of
CORSIKA8 so we can simulate a much wider variety of geometries and experiments.

2. We need to support both formalisms (ZHS & Endpoint) and a variety of heterogenous
hardware (SIMD, MT CPU, MPI, GPU)

3. Standard steering and output file formats across all implementations and backends.

4. We need to make it easy for collaborations to modify and extend the radio module to
support the needs of their particular experiment while maximizing code reuse.

This talk presents some of the early design discussions and interface requirements for
feedback from the broader radio community. Please interrupt with questions!

3/13

Automatic Improvements & Status

The current C8 framework already provides clear advantages over existing simulations:

• The geometry & environment architecture can support arbitrary shower geometries
(not restricted to downgoing air showers like C7 / Aires).

• The shower physics is being developed to support a wider range of media (in-ice
showers!) and showers developing across multiple media (air-to-ice showers, etc.).

However, there are still several blocking elements before C8 can start to be used:

1. No EM interaction model.
2. No magnetic field modeling.
3. No radio emission implementation (← this presentation)

The goal is to develop the radio emission in parallel with the electromagnetic interaction
model but hadronic showers could be run as soon as the radio implementation is ready.

4/13

Extensibility

While C8 will provide at least two standard reference implementations for radio emission
(ZHS and Endpoint), many experiments will need to develop custom variants to extend the
features of C8.

1. ANITA must model the reflection of the radio emission off a rough ice surface and
additional propagation upwards to the detector.

2. In-ice detectors that need to model the effects of refraction during propagation (talk
by C. Glaser).

3. Particle showers penetrating from air into ice (talk by K. de Vries)

C8 will be designed to make implementing these variants as easy as possible and maximize
code reuse across the different implementations.

5/13

Status

A prototype CPU-based ZHS implementation is currently in development - there are still
some non-radio tasks that must be completed before it can be tested but it is underway!

The discussions in the next few slides are based on this prototype.

6/13

Modular Environment

The environment architecture in C8 is modular so (automatically) support:

• Custom medium density models and geometries.

• Dependent (or independent) refractive index models (tabulated or analytic) (coming
soon).

• Uniform, IGRF/WMM, or custom magnetic field models (coming soon).

7/13

Prototype Radio Process Architecture

• The prototype radio interface is
composed of two compile-time
subcomponents that can be
independently swapped out:

1. A specific radio implementation
(Endpoint+CPU, ZHS+GPU, etc.)

2. An antenna implementation (details
later)

• This decouples simulation-wide
parameters from antenna-specific
parameters and allows for easily
replacing the hardware backend of a
particular simulation.

ContinuousProcess<T>

RadioProcess<RadioImpl>

AntennaImpl

RadioImpl<AntennaImpl>

Formalism:
 ZHS
 Endpoint
 New?

Backends:
 MT CPU
 GPU
 Accelerators?

CPU
GPU
SIMD?

Figure 1: Compile-time polymorphic (CRTP)
RadioProcess<> hierarchy.

8/13

Radio Implementation

• The RadioEmission<RadioImpl> interface implements common radio
functionality:

• Loading text-based antenna config files.
• Processing and saving (HDF5?) output files (see T. Huege talk).
• Common utility methods.

• Concrete implementations of the actual radio formalism must (currently) provide:
1. Emit(Particle&, Track const&) or Emit(Particle&, Track const&,

Antenna&) that calculates, propagates, and stores the radio emission from a given
particle along a given track into each antenna.

2. MaxStepLength(Particle const&, Track const&) to control the next allowable
step length of the particle.

• Different concrete implementations (time or frequency domain) can be optimized and
provided for the different backends (CPU, SIMD, MPI, GPU etc.) as instantiated by
the user as needed.

9/13

Antenna Implementation

Concrete Antenna<> instances manage their own properties and waveforms. This allows
for a variety of interesting optimizations:

• Optimizing waveform duration and start time for each antenna (memory usage
optimizations)

• Different sample-rate/bandwidths for each antenna (reducing cache/memory usage
where not needed)

• Custom orientation of the antenna polarization axes (can be placed to align with a
particular experiment.)

• Incorporating experiment detector responses into CORSIKA simulation (using a
custom Antenna<> instance).

• Others??

Most experiments will be served by the optimized implementations provided by CORSIKA8.
10/13

Parallelization

By decoupling the simulation formalism from the antenna implementation, lots of
opportunities for parallelization are available:

• SIMD-optimized radio formalism and waveform assignment.

• Lock-free multi-{thread,process} parallelization over individual antennas.

• … and more!

11/13

Python Analysis Suite

• CORSIKA7+CoREAS provides a useful suite of Python tools for loading and
processing CoREAS output.

• C8 should provide a similar package to perform common analysis tasks from Python
(loading output, coordinate transformations, filtering, etc.)

12/13

Join the Discussion

• There is a merge request open specifically for discussion regarding the design of the
radio interface (here)

• If you are interested in contributing at this early stage, please join the discussion or
reach out to me (prechelt@hawaii.edu)

Hopefully there’s plenty of time for questions and comments!

What do you need from CORSIKA8 radio?

13/13

https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika/merge_requests/202
mailto:prechelt@hawaii.edu

