FASERv: very-forward neutrinos June 23rd 2020 CORSIKA Cosmic Ray Simulation Workshop # Felix Kling send feedback to felixk@slac.stanford.edu # The FASER Experiment - FASER = ForwArd Search ExpeRiment: - * newest experiment at the LHC - * approved, funded, - * will operate during LHC Run 3 (2021-2024) - * 60 collaboration members - * placed along the beam collision axis - * 500m downstream from ATLAS IP - * located in unused service tunnel TII2 - * very forward: covers pseudo rapidity η>9 - * shielded from IP by 100m rock ## The FASER Detector ## The FASER Detector #### Neutrinos at the LHC - neutrinos detected from many sources, but not from colliders - many neutrinos at LHC produced in π , K, D meson decay - → ATLAS provides intense energetic collimated neutrino beam towards FASER - * ~ 10^{12} neutrino in LHC Run 3 * E~TeV. * θ ~ mrad - dedicated FASERv neutrino detector in front of FASER - * 25cm x 25cm x 1.3m emulsion detector - * tungsten target with 1.2 ton mass - * ~ 20000 $\nu\mu$, ~ 2000 ν e, ~ 20 $\nu\tau$ - TeV energy range currently unconstrained - * this allows to probe neutrino cross sections at TeV for all 3 flavors 2m long spectrometer 0.6T permanent 1 m 1.5 m long decay volume interface tracker emulsion+target - neutrino cross section measurements are limited by neutrino flux uncertainty - * we need to quantify and reduce these uncertainties - * currently, we use spread of generator prediction as uncertainty estimate ... - neutrino flux sensitive to forward pion, kaon and charm production - neutrino cross section measurements are limited by neutrino flux uncertainty - * we need to quantify and reduce these uncertainties - * currently, we use spread of generator prediction as uncertainty estimate ... - neutrino flux sensitive to forward pion, kaon and charm production - * use hadronic interaction models - * not all of them work well ... - * simulators don't provide systematic uncertainties - * diffractive physics is important but not always modeled well - * we are currently developing a dedicated forward physics tune in Pythia8 using forward data - * include tuning uncertainties (similar to PDFs) to estimate flux uncertainties Felix Kling - neutrino cross section measurements are limited by neutrino flux uncertainty - * we need to quantify and reduce these uncertainties - * currently, we use spread of generator prediction as uncertainty estimate ... - neutrino flux sensitive to forward pion, kaon and charm production - * use hadronic interaction models - * not all of them work well ... - * simulators don't provide systematic uncertainties - * diffractive physics is important but not always modeled well - * we are currently developing a dedicated forward physics tune in Pythia8 using forward data - * include tuning uncertainties (similar to PDFs) to estimate flux uncertainties - * essentially unconstrained by collider data - * can be calculated using pQCD: $g g \rightarrow c c$ - * allows to use PDF and scale uncertainties - * recently done in <u>2002.03012</u> - neutrino cross section measurements are limited by neutrino flux uncertainty - * we need to quantify and reduce these uncertainties - * currently, we use spread of generator prediction as uncertainty estimate ... - neutrino flux sensitive to forward pion, kaon and charm production - * use hadronic interaction models - * not all of them work well ... - * simulators don't provide systematic uncertainties - * diffractive physics is important but not always modeled well - * we are currently developing a dedicated forward physics tune in Pythia8 using forward data - * include tuning uncertainties (similar to PDFs) to estimate flux uncertainties - * essentially unconstrained by collider data - * can be calculated using pQCD: $g g \rightarrow c c$ - * allows to use PDF and scale uncertainties - * recently done in <u>2002.03012</u> - * generator predictions vary largely - * how trustworthy are they? - neutrino cross section measurements are limited by neutrino flux uncertainty - * we need to quantify and reduce these uncertainties - * currently, we use spread of generator prediction as uncertainty estimate ... - neutrino flux sensitive to forward pion, kaon and charm production - * use hadronic interaction models - * not all of them work well ... - * simulators don't provide systematic uncertainties - * diffractive physics is important but not always modeled well - * we are currently developing a dedicated forward physics tune in Pythia8 using forward data - * include tuning uncertainties (similar to PDFs) to estimate flux uncertainties - * essentially unconstrained by collider data - * can be calculated using pQCD: $g g \rightarrow c c$ - * allows to use PDF and scale uncertainties - * recently done in <u>2002.03012</u> - * generator predictions vary largely - * how trustworthy are they? You are the experts. Please let me know what you think. # Summary, Questions and Outlook #### **FASER/FASERv** - new LHC experiment: funded and approved - sensitive to $\eta > 9$ - FASERv: forward neutrino - FASER: forward muons and LLP searches Many thanks to the Heising-Simons Foundation, the Simons Foundation, and to CERN for invaluable support - improved experiments at HL-LHC under consideration (Snowmass 2021) #### **FASERv** and Hadronic Interaction Models - Hadronic interaction model are crucial for FASERv's neutrino measurements. - FASER/FASERv might also provide valuable input to probe these models. - FASERv and CRMCs can benefit from each other - In the future, we would be happy to work more closely together with you. - You are the experts, so your expertise is invaluable! - Let us know, if you have any criticism, ideas or wishes. #### We look forward to feedback and suggestions. send feedback to felixk@slac.stanford.edu