FASERv: very-forward neutrinos

June 23rd 2020

CORSIKA Cosmic Ray Simulation Workshop

Felix Kling

send feedback to felixk@slac.stanford.edu

The FASER Experiment

- FASER = ForwArd Search ExpeRiment:
 - * newest experiment at the LHC
 - * approved, funded,
 - * will operate during LHC Run 3 (2021-2024)
 - * 60 collaboration members
 - * placed along the beam collision axis
 - * 500m downstream from ATLAS IP
 - * located in unused service tunnel TII2
 - * very forward: covers pseudo rapidity η>9
 - * shielded from IP by 100m rock

The FASER Detector

The FASER Detector

Neutrinos at the LHC

- neutrinos detected from many sources, but not from colliders
- many neutrinos at LHC produced in π , K, D meson decay
 - → ATLAS provides intense energetic collimated neutrino beam towards FASER
 - * ~ 10^{12} neutrino in LHC Run 3 * E~TeV. * θ ~ mrad
- dedicated FASERv neutrino detector in front of FASER
 - * 25cm x 25cm x 1.3m emulsion detector
 - * tungsten target with 1.2 ton mass
 - * ~ 20000 $\nu\mu$, ~ 2000 ν e, ~ 20 $\nu\tau$
- TeV energy range currently unconstrained
 - * this allows to probe neutrino cross sections at TeV for all 3 flavors

2m long spectrometer

0.6T permanent

1 m

1.5 m long

decay volume

interface tracker

emulsion+target

- neutrino cross section measurements are limited by neutrino flux uncertainty
 - * we need to quantify and reduce these uncertainties
 - * currently, we use spread of generator prediction as uncertainty estimate ...
- neutrino flux sensitive to forward pion, kaon and charm production

- neutrino cross section measurements are limited by neutrino flux uncertainty
 - * we need to quantify and reduce these uncertainties
 - * currently, we use spread of generator prediction as uncertainty estimate ...
- neutrino flux sensitive to forward pion, kaon and charm production
- * use hadronic interaction models
- * not all of them work well ...
- * simulators don't provide systematic uncertainties
- * diffractive physics is important but not always modeled well
- * we are currently developing a dedicated forward physics tune in Pythia8 using forward data
- * include tuning uncertainties (similar to PDFs) to estimate flux uncertainties

Felix Kling

- neutrino cross section measurements are limited by neutrino flux uncertainty
 - * we need to quantify and reduce these uncertainties
 - * currently, we use spread of generator prediction as uncertainty estimate ...
- neutrino flux sensitive to forward pion, kaon and charm production
- * use hadronic interaction models
- * not all of them work well ...
- * simulators don't provide systematic uncertainties
- * diffractive physics is important but not always modeled well
- * we are currently developing a dedicated forward physics tune in Pythia8 using forward data
- * include tuning uncertainties (similar to PDFs) to estimate flux uncertainties

- * essentially unconstrained by collider data
- * can be calculated using pQCD: $g g \rightarrow c c$
- * allows to use PDF and scale uncertainties
- * recently done in <u>2002.03012</u>

- neutrino cross section measurements are limited by neutrino flux uncertainty
 - * we need to quantify and reduce these uncertainties
 - * currently, we use spread of generator prediction as uncertainty estimate ...
- neutrino flux sensitive to forward pion, kaon and charm production
- * use hadronic interaction models
- * not all of them work well ...
- * simulators don't provide systematic uncertainties
- * diffractive physics is important but not always modeled well
- * we are currently developing a dedicated forward physics tune in Pythia8 using forward data
- * include tuning uncertainties (similar to PDFs) to estimate flux uncertainties

- * essentially unconstrained by collider data
- * can be calculated using pQCD: $g g \rightarrow c c$
- * allows to use PDF and scale uncertainties
- * recently done in <u>2002.03012</u>
- * generator predictions vary largely
- * how trustworthy are they?

- neutrino cross section measurements are limited by neutrino flux uncertainty
 - * we need to quantify and reduce these uncertainties
 - * currently, we use spread of generator prediction as uncertainty estimate ...
- neutrino flux sensitive to forward pion, kaon and charm production
- * use hadronic interaction models
- * not all of them work well ...
- * simulators don't provide systematic uncertainties
- * diffractive physics is important but not always modeled well
- * we are currently developing a dedicated forward physics tune in Pythia8 using forward data
- * include tuning uncertainties (similar to PDFs) to estimate flux uncertainties

- * essentially unconstrained by collider data
- * can be calculated using pQCD: $g g \rightarrow c c$
- * allows to use PDF and scale uncertainties
- * recently done in <u>2002.03012</u>
- * generator predictions vary largely
- * how trustworthy are they?

You are the experts.

Please let me know what you think.

Summary, Questions and Outlook

FASER/FASERv

- new LHC experiment: funded and approved
- sensitive to $\eta > 9$
- FASERv: forward neutrino
- FASER: forward muons and LLP searches

Many thanks to the Heising-Simons Foundation, the Simons Foundation, and to CERN for invaluable support

- improved experiments at HL-LHC under consideration (Snowmass 2021)

FASERv and Hadronic Interaction Models

- Hadronic interaction model are crucial for FASERv's neutrino measurements.
- FASER/FASERv might also provide valuable input to probe these models.
- FASERv and CRMCs can benefit from each other
- In the future, we would be happy to work more closely together with you.
- You are the experts, so your expertise is invaluable!
- Let us know, if you have any criticism, ideas or wishes.

We look forward to feedback and suggestions.

send feedback to felixk@slac.stanford.edu