Opportunities for BSM physics in Cosmic Rays

Oliver Fischer

CORSIKA Cosmic Ray Simulation Workshop 22.06.2020

Beyond the Standard Model

Motivation as strong es ever:

- Dark Matter
- Baryon asymmetry of the Universe
- Neutrino oscillations
- Hierarchy problem

Popular explanations:

- WIMPs
- Dark sectors

 \Rightarrow Associated new dynamics

- Sterile neutrinos
- (SUSY)

Oliver Fischer

SUSY and others

No hint of weak-scale SUSY or other TeV-scale resonances ⇒ likely outside the LHC's energy reach.

- Indirect hints for BSM in LHCb flavor anomalies:
 - BSM contact operators,
 - E.g. leptoquarks with masses O(10) TeV.

Oliver Fischer

Opportunities for BSM physics in Cosmic Rays

2 / 11

Discouraging for collider physics.

Anomalies in other experiments!

Oliver Fischer

Opportunities for BSM physics in Cosmic Rays

3 / 11

・ロ・・聞・・思・・思・ しょうくの

The ANITA excess

Observation of an Unusual Upward-going Cosmic-ray-like Event in the Third Flight of ANITA

P. W. Gorham,¹ B. Rotter,¹ P. Allison,² O. Banerjee,² L. Batten,³ J. J. Beatty,² K. Bechtol,⁴ K. Belov,⁵ D. Z. Besson,^{6,7} W. R. Binns,⁸ V. Bugaev,⁸ P. Cao,⁹ C. C. Chen,¹⁰ C. H. Chen,¹⁰ P. Chen,¹⁰ J. M. Clem,⁹ A. Connolly,² L. Cremonesi,³ B. Dailey,² C. Deaconu,⁴ P. F. Dowkontt,⁸ B. D. Fox,¹ J. W. H. Gordon,² C, Hast.¹¹ B, Hill.¹ K, Hughes.² J, J, Huang.¹⁰ R, Hupe.² M, H, Israel.⁸ A, Javaid.⁹ J, Lam.¹² K, M, Liewer.⁵ S. Y. Lin,¹⁰ T.C. Liu,¹⁰ A. Ludwig,⁴ L. Macchiarulo,¹ S. Matsuno,¹ C. Miki,¹ K. Mulrey,⁹ J. Nam,¹⁰ C. J. Naudet,⁵ R. J. Nichol.³ A. Novikov.⁶ E. Oberla.⁴ M. Olmedo.¹ R. Prechelt.¹ S. Prohira.⁶ B. F. Rauch.⁸ J. M. Roberts.¹ A. Romero-Wolf,⁵ J. W. Russell,¹ D. Saltzberg,¹² D. Seckel,⁹ H. Schoorlemmer,¹ J. Shiao,¹⁰ S. Stafford,² J. Stockham,⁶ M. Stockham,⁶ B. Strutt,¹² G. S. Varner,¹ A. G. Vieregg,⁴ S. H. Wang,¹⁰ and S. A. Wissel¹³ ¹Dept. of Physics and Astronomy, Univ. of Hawaii, Manoa, HI 96822. ²Dept. of Physics, Center for Cosmology and AstroParticle Physics, Ohio State Univ., Columbus, OH 43210. ³Dept. of Physics and Astronomy, University College London, London, United Kingdom, ⁴Dept. of Physics, Enrico Fermi Institute, Kavli Institute for Cosmological Physics, Univ. of Chicago, Chicago IL 60637. ⁵Jet Propulsion Laboratory, Pasadena, CA 91109. ⁶Dept. of Physics and Astronomy, Univ. of Kansas, Lawrence, KS 66045. ⁷National Research Nuclear Univ., Moscow Engineering Physics Inst., Moscow, Russia. ⁸Dept of Physics & McDonnell Center for the Space Sciences, Washington Univ in St Louis, MO ⁹Dept. of Physics. Univ. of Delaware. Newark. DE 19716. ¹⁰Dept. of Physics, Grad. Inst. of Astrophys., & Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei, Taiwan, ¹¹SLAC National Accelerator Laboratory, Menlo Park, CA, 94025. ¹²Dept. of Physics and Astronomy, Univ. of California, Los Angeles, Los Angeles, CA 90095. ¹³Physics Dept., California Polytechnic State Univ., San Luis Obispo, CA 93407.

We report on an upward traveling, radio-detected cosmic-ray-like impulsive event with characteristics closely matching an extensive air shower. This event, observed in the third flight of the Antarctic Impulsive Transient Antenna (ANITA), a NASA-sponsored long-duration balloon payload, is consistent with a similar event reported in a previous flight. These events may be produced by the atmospheric decay of an upward-propagating r-lepton

Balloon-borne experiment, [1803.05088]

Opportunities for BSM physics in Cosmic Rays

4 / 11

Oliver Fischer

Opportunities in super-LHC energy collisions

- Explanations with TeV-scale resonances and Long-Lived Particles (LLP) cf. [1812.00919], [2002.12910], [2004.09464]
- IceCube makes compatible observations.
 D. B. Fox et al. [1809.09615]
- **b** BSM: resonances with $\sqrt{s} > 14$ TeV vs. small fluxes.
- Observable signatures in CR showers. Cf. [1906.09064]
- Visible signatures in large-scale experiments.

Oliver Fischer

Opportunities for BSM physics in Cosmic Rays

5 / 11

Long lived particles

- "Natural" in many BSM models.
- Masses typically below the weak scale.
- Signatures: displaced vertices, kinked or disappearing tracks.
- Challenge the LHC and other experiments.
- Dedicated new experiments: FASER approved, many planned.
- Possible explanations for anomalies in neutrino experiments.

Cf. explanations of the MiniBooNE anomaly, e.g. OF et al [1909.09561]

The experimental landscape for LLP

On heavy neutral leptons, Gaia Lanfranchi for the ESPP in Granada, cf. [1901.09966] Similar for dark photons, scalars, axion-like particles.

Oliver Fischer

Opportunities for BSM physics in Cosmic Rays

7 / 11

э

< ロ > < 同 > < 回 > < 回 > < 回 >

LLP in CR showers

- LLP with masses ~ GeV can be produced in hadron decays.
- Possible in a CR shower even without TeV-scale mediator.
- LLP flux that has to be quantified for every model.
- CR at all energies and angles contribute.
- No new detectors necessary: Dedicated searches should be sensitive already.

Oliver Fischer

Opportunities for BSM physics in Cosmic Rays

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

This is an upcoming topic!

- "Constraining strongly-coupled new physics from cosmic rays with machine learning techniques":
 - Physics: Sphaleron or strongly coupled dark sector.
 - Method: Herwig and HERBVI with the CORSIKA.

Spannowsky et al. [1906.09064]

- "Searches for Atmospheric Long-Lived Particles":
 - Physics: CR-produced LLP in IceCube or SuperKamiokande.
 - Method: Matrix Cascade Equation + SYBILL.

Coloma, Argüelles et al. [1910.12839]

- "Constraining New Physics with High Multiplicity : I. Ultra-High Energy Cosmic Rays on air-shower detector arrays":
 - Physics: Sphaleron, microscopic black holes.
 - Method: BlackMax + PYTHIA + CORSIKA

Jho & Park [1806.03063]

Oliver Fischer

Opportunities for BSM physics in Cosmic Rays

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusions

• Cosmic rays constitute a source for BSM:

- Resonances at super-LHC energies;
- Long lived particles with masses \sim GeV;
- \Rightarrow Complementarity.
- A link between a CR simulation framework and BSM models is currently missing.
- ▶ Useful to study anomalies in IceCube, ANITA, and others.
- Signatures in Cosmic Ray showers.
- New Physics discovery potential!

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Thank you.

Oliver Fischer

Opportunities for BSM physics in Cosmic Rays

11 / 11

・ロ・・母・・ヨ・・ヨ・ ヨ・ シュぐ