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Graph Neural Networks
● Convolutions on non-euclidean domains
● Graph and spectral graph basics
● Graph Convolutional Neural Networks

 Spatial domain
 Spectral domain

Jonas Glombitza
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Time Schedule

Introduction: Graphs and Graph Convolutions
● Basics of graphs and graph theory
● Graph Convolution Networks (GCNs)
● Practice 1: Semi-supervised node classification using GCNs (karate club) 

Convolutions in Spectral Domain
● Spectral graph theory
● Chebychev Convolutions (ChebNets)
● Practice 2: MNIST on graphs unsing ChebNets

Convolutional in Spatial Domain
● Edge-Convolutions in Dynamic Graph Convolutional Neural Networks (DGCNNs)
● Practice 3: Cosmic-ray classification using DGCNNs
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Deep Learning
● Outstanding results

 Speech recognition
 Image recognition → Convolutions
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Convolutions and Datasets

● Works in well defined 
euclidean space

● physics data often feature 
different geometries
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Convolutions
● Translational invariance
● Scale separation (hierarchy learning)
● Deformation stability (filters are localized in space)
● Parameters are independent from input size

Paul-Louis Pröve, 
Towards Data Science

Adit Deshpande - https://adeshpande3.github.io/adeshpande3.github.io/
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Hexagonal Grids

What do these experiments have in common?

➢ Most astroparticle detectors feature hexagonal grids
➢ Need change of coordinate system for matrix representation of data
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Hexagonal Grids - Convolutions 

Offset coordinates: neighbor relations in convolution filter changes between rows
✗ No translational invariance unless using a stride of 2

Axial coordinates: need to pad edges → need more storage
✔ translational invariance
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Hexagonal Convolution
● Expand the concept of invariance to rotation symmetries → group convolutions
➢ Use complete symmetry of hexagonal data (translation + rotation of filters)

➢ Hexagonal convolutions

● Weights of the filter shared over translation and over rotations
● Each filter creates 6 orientation channels

● Decrease number of parameters
● Increase training time
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HexaConv

Initial convolution Activated pixel when using filter 1

1 2 3 4 5 6

1 2 3 4 5 6

● Extend convolutions to invariance on hexagonal grids (p6 group)
● Transformation makes filter invariant to rotations
● Orientation channel cycling

● Example:
● Initial Convolution: 
● Convolution from: 

E. Hoogeboom, J. Peters, T. Cohen,
M. Welling: ArXiv/1803.02108
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Code Example

import tensorflow as tf
from tensorflow import keras
from groupy.gconv.gconv_tensorflow.keras.layers import P6ConvZ2Axial, P6ConvP6Axial
layers = keras.layers

input1 = layers.Input(shape=(9, 9, 2))
kwargs = dict(activation='relu', kernel_initializer='he_normal')
# initial convolution
z = P6ConvZ2Axial(3, 3, padding='same', activation='relu')(input1)
z = P6ConvP6Axial(6, 3, padding='same', **kwargs)(z)
z = layers.Flatten()(z)

● Filter-size 3: → 7 adaptive parameter
● Filter-size 5: → 19 adaptive parameters
● Need data in axial coordinates
● Beta implementation of keras / tf layers by Lukas Geiger

Check GitHub: https://github.com/ehoogeboom/hexaconv
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Generalization to Non-Euclidean Domains
● Defining convolutions, challenging on non-euclidean domains

 Deformation of filters, changing neighbor relations 
 Non-isometric connections on graphs

● Manifolds ● Graphs

How can we generalize Convolutions?



Deep Learning on Graphs

● Introduction to graphs
● Graph basics
● Spectral graph theory

ICLR2020 submissions - growth
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Types of Graphs

heterogeneous graph

directed graphundirected graph

graphs with edge information

bipartite graph
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What is a Graph

● Graph is ordered pair
 of nodes
 and edges

➢ mainly defined by neighborhood

● Nodes have no order
➢ Permutational invariance

● Challenging to visualize!
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Example Graph
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Adjacency Matrix
● Matrix to represent structure of graph
● Elements indicate edges of graph
● Symmetric for undirected graphs
● In general sparse
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● Used to propagate signals on the graph

signal
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Degree Matrix
● Elements count number of times

edges terminate at each node
● Used used to normalize adjacency
●
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Laplacian Matrix
● Laplacian matrix     = normalized adjacency matrix



● Difference between    and its local average
● Core operator in spectral graph theory

● Symmetric normalized Laplacian:
 Eigenvalues do not depend on degree of nodes

● Discrete version of Laplace operator

3 6

52

4

1

= function acting on    
the graph



Graph Convolutional Networks

Thomas Kipf, Max Welling
arXiv:1609.02907

● Propagation rule for GCN
● Connection to euclidean Convolutions
● Semi-supervised classification
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Natural Images vs. Graphs

● Collection of pixels (node)
 Node (pixel) holds feature vector
 Dense (rarely sparse)
 Discrete, regular (symmetric)

● Images feature euclidean space

● Collection of nodes and edges
 Node + edge holds feature vector
 Can be dense or sparse
 Continuous non-symmetric positions

● Graphs can feature “arbitrary” domains
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Graph Convolutional Networks

● Propagation rule for GCN:

2D Convolution on regular grid

● Node-wise weight-sharing!● Feature-map-wise weight-sharing!

Convolution on Graph

Average over neighbors



Deep Learning for Graphs
Glombitza | RWTH Aachen | 22 02/17/20 | HAP Workshop Big Data Science

Graph Convolutional Networks

● In general more easy 
● Self coupling: same weight as neighbors

 Very simple → works surprisingly good

● Node-wise weight-sharing!
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Mathematical Formulation
● Input 



● Weight signal with neighborhood using adjacency matrix 


● Apply transformation using weight matrix


● As      do not include self loops, we have to add them via

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Normalization
● Normalization needed in deep learning

 Input / output normalization + batch / feature normalization
 Weight normalization

●                     is not normalized
 Each multiplication would change feature scale!

● Normalize new adjacency matrix using degree matrix       of
(average over neighbor nodes)
  

● Final propagation rule:
 Can be repeated for each layer, by sharing graph structure
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Convolutional Operation
● Fully connected layers are special case of convolutional layers

➢ Strong prior on local correlation and translational invariance
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Graph Convolution
● Convolutional layers are special case of Graph convolutional layers  
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Graph Convolution
● Convolutional layers are special case of Graph convolutional layers  
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● Output 5 nodes
 Structure shared over model

● Graph Convolution
 5 adaptive weights

● Cartesian Convolution
 3 adaptive weights (translational invariance)

1 2 3 4 5
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Graph Convolutional Network - GCN

● Share graph structure over 
model

➢ Calculate once

during pre-processing
● Aggregate neighborhood 

information in every node

➢arXiv:1609.02907
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Node Classification – social network
● Node Classification of single graph

 Social network
● Clustering / classification of nodes

 Voting behavior of individual persons

● Semi-supervised
 use few labels || rest of nodes masked

● Unsupervised
 without label information
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TensorFlow

“Open source software library for numerical computation 
using data flowing graphs”

● Nodes represent mathematical operations
● Graph edges represent multi dimensional data arrays 

(tensors) which flow through the graph

● Supports:
 CPUs and GPUs
 Desktops and mobile devices

● Released 2015, stable since Feb. 2017
● Developer: Google Brain
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Keras
● Will use Keras in this tutorial (TensorFlow backend) - https://keras.io

 High-level neural networks API, written in Python
● Concise syntax with many reasonable default settings
● Useful callbacks for monitoring the training procedure
● Nice Documentation & many examples and tutorials + useful extensions
● Ships with TensorFlow

● We use tf.keras 2.2.4-tf // TensorFlow 2.1

https://keras.io/
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Additional Software
● We use Spektral in this tutorial, version 0.2.0
● Python library for deep learning on graphs
● Based on Keras and TensorFlow

https://github.com/danielegrattarola/spektral

https://github.com/rusty1s/
pytorch_geometric

● Alternative for PyTorch users:

● For visualization of graphs we use NetworkX

https://github.com/danielegrattarola/spektral
https://github.com/rusty1s/pytorch_geometric
https://github.com/rusty1s/pytorch_geometric
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Opens the example 
page

● Developed in Aachen (group of Martin Erdmann)
● GPU extension

 20x NVIDIA GTX 1080
 3x RTX 6000, 6x RTX 5000

● Accessible via https://vispa.physik.rwth-aachen.de/

https://vispa.physik.rwth-aachen.de/


Deep Learning for Graphs
Glombitza | RWTH Aachen | 34 02/17/20 | HAP Workshop Big Data Science

Zachary's Karate Club
● “Historical” Dataset
● Social network of university karate club

 Edges represent social relationships outside the club
● Conflict between administrator “John. A” and trainer “Mr. Hi”

➢ Karate Club splits in 4 groups

Task
● Given a single graph and

4 labels (1 of each group)
● Identify membership (1 of 4 groups) for 

every person
● Semi-supervised node classification
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Embedding
● To visualize machine learning models
● Project vectors of high dimensional space on

low dimensional manifold

● Good classifier need high separation capability
 especially at latest layers

● Most simple embedding
 Neural network layer with 2 dimensional uttput

3D embedding of MNIST 

https://projector.tensorflow.org/

x = GraphConv(2, activation='tanh', name="embedding")([x, fltr_in])

https://projector.tensorflow.org/
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Practice I

● Reach accuracy > 90%
● Change hyperparameters:

 Number of features, Learning rate, 
epochs, layers ...
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Practice 1 – Karate Club Network
● Tune learning rate
● Increase iterations
● Well connected labels



Convolutions in the Spatial Domain
● Edge-Convolutions
● Dynamic Graph Convolutional Neural Networks
● Physics example

Y. Wang et al.
ArXiv:1801.07829

M. Simonovsky, N. Komodakis
ArXiv:1704.02901
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Convolution in Spatial Domain
● Graphs feature permutational invariance of nodes
● Orientation of nodes meaningless

● Whats with networks embedded in the spatial domain?
 Node position is important!
 Not only neighborhood relationship!
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Convolution in Spatial Domain
● Images with discrete and continuous pixel coordinates

● Learned filter 

Discrete grid positions Continuous grid positions

……?

Transition of discrete 
filter to continuous filter
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EdgeConvolution
✗ For continuous pixelization →matrix become gigantic and sparse
➔ Approximate discrete f-dimensional kernel using deep neural network
● Network applied at each pixel using:

 central pixel
 relation to neighbor pixels eg.      or

● Outputs f-dimensional feature vector

Calculate        for each 

adjacent node
https://arxiv.org/abs/1801.07829

f = 6

https://arxiv.org/abs/1801.07829
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● Convolution acts on neighborhood       yielding for each node:
 k new features      (one for each neighbor)
 feature dimension depends on features of
➢ Parameters shared over edges

● Aggregate neighborhood information
● Aggregation operation flexible:

● eg.

Edge Convolution

https://arxiv.org/abs/1801.07829

f = 6

k new feature 
vectors

https://arxiv.org/abs/1801.07829
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Define Graph with kNN Algorithm
● Before applying EdgeConv

 Define underlying graph
● Find neighbors using kNN clustering

 Smallest euclidean distance in feature space 
➢ Directed graph

● Edges can be updated in each layer
➢ In feature space neighbors change
➢ Dynamical update of graph 
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Dynamical Graph Update
● In each layer neighbors of nodes 

change
● Update of graph using kNN
● DNN can not directly learn 

neighbor relations
 kNN has no gradient

● Implicit clustering of nodes
 Nodes with same features are 

embedded similar
➢ Become neighbors

Layer 1

Layer 2

Layer 3

Erdmann et al.: Identification of Patterns in Cosmic-Ray Arrival 
Directions using Dynamic Graph Convolutional Neural Networks
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Example: Jet Tagging via Particle Clouds
● Challenge in high-energy physics
● Input: Particle cloud

 Permutational invariance!
● Classify jets into: 1. top quarks 2. background

● ParticleNet won championship
 Using 3 EdgeConv Layer



Deep Learning for Graphs
Glombitza | RWTH Aachen | 46 02/17/20 | HAP Workshop Big Data Science

Summary: Dynamical Graph Convolution

Discrete
grid positions

Continuous
grid positions

Use DNN

Input: size  x (features)

1. Search k next neighbors

2. Convolve signals
 → size x (k, channels)

3. Aggregate signals
→ size x (channels)

→ Repeat if you want
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Convolution vs Dynamical Convolution

Discrete grid positions Continuous grid positions

Similarities:
● Localized convolution
● Feature symmetry invariance in data: 

(translation, rotation, permutation)
 depends on your chosen 
➔ Weight sharing over pixel positions

●

Differences:
● Image: convolution at positions over 

features
 Neighbor points stay neighbors

● Graph: at features over features
 Neighbors can change!

x

k(x)

kernel

x

k(x)

kernel
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Example Classification of Cosmic Rays 
● Ultra-high energy cosmic rays deflected by

galactic magnetic field
● Cosmic rays induce characteristic pattern

when arriving at the earth

Task
● Given skymap of 500 cosmic rays
● Using EdgeConvs classify if skymap contains

I. Signal from single significant source

II.Only isotropic background

Elongated
pattern

Visualize formed 
graph in each 
EdgeConv layer 
in physics space
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● Modify kernel network → change          of EdgeConv

Dynamic + fixed graph updates
● Used fixed graph by passing in each layer the very first points_input 

● Use dynamic graph update by passing only produced feature dimension x

Helpful Comments on the Code

x = EdgeConv(lambda a: kernel_nn(a, nodes=8), next_neighbors=5)([points_input, feats_input])

x = EdgeConv(lambda a: kernel_nn(a, nodes=16), next_neighbors=8)(x)

def  kernel_nn(data, nodes=16):
    d1, d2 = data  # get xi ("central" pixel) and xj ("neighborhood" pixels)
    dif = layers.Subtract()([d1, d2])
    x = layers.Concatenate(axis=-1)([d1, dif])
    x = layers.Dense(nodes, use_bias=False, activation="relu")(x)
    x = layers.BatchNormalization()(x)
    return  x
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Recap Discriminative Localization

● Weights of classification layer state importance of respective feature map
➢ Use superposition of last feature maps scaled with weights of classification layer
➢ Map of activations indicate how the output of the last convolutional layer is used 

for final classification

B. Zhou et al. - Learning Deep Features for Discriminative Localization
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Practice II

● Try to reach acc. > 95%
● Change graph structure

 Fixed vs. dynamic
● Modify kernel function
● Tune hyperparameters



Convolutions in the Spectral Domain
● Spectral graph theory
● Stable and localized filtering
● Chebychev Convolutions

M. Defferrard, X. Bresson, P. Vandergheynst
ArXiv:1606.09375

J. Bruna, W. Zaremba, A. Szlam, Y. LeCun
arXiv:1312.6203
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Convolution on Non-Euclidean Manifolds

●

● Convolution has to include curvature of manifold
 Filters get distorted

● How to convolve?

https://stephenbaek.github.io/projects/zernet/

● How to make it fast?

Paul-Louis Pröve, 
Towards Data Science

https://stephenbaek.github.io/projects/zernet/
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Convolutional Theorem
● Convolution acts pointwise in Fourier domain



 in Fourier domain matrices are diagonal!

● Accelerate computation


● But need to do Fourier transformation!
➢ Need eigenvectors of Fourier domain
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Laplacian
● Laplace matrix      is discrete version of Laplace operator
● Laplace operator encodes smoothness/”curvature” of manifold (2nd derivative)

● Eigenfunctions of Laplacian form orthonormal basis
                , for graphs

● Solution directly connected to Fourier space
● Fourier basis = Laplacian eigenvectors/eigenfunctions

●

= matrix of eigenvalues

= matrix of eigenvectors
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Example: Spherical Harmonics

● eg. Schrödinger’s equation for hydrogen atom
 angular component breaks down to 

● Eigenfunctions of Laplacian in spherical coordinates


➢ Spherical harmonics
 complete and orthonormal set of

eigenfunctions of angular component https://rodluger.github.io/

https://rodluger.github.io/
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Spectral Convolutions
● We can perform the convolution in the spectral domain

 Signal
 Weight matrix

●

●

Problems:
● Weights scale with number of graph nodes

 Act global! No prior on local features!
●           strongly depends on      (         )

 Bad generalization performance!

NIPS2017: M. Bronstein, J. Bruna, A. Szlam, X. Bresson, Y. LeCun

Adaptive parameters 
in Fourier domain
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Smoothing in Spectral domain
● Approximate         in spectral domain 

●

● Learn only     parameters → parameter reduction
● For     <<    ,        gets smooth in spectral domain

 Spectral theory: filter become local!
proposed by Bruna et al. https://arxiv.org/abs/1312.6203

adaptive parameters

some function

Boris Knyazev, Towards data science

https://arxiv.org/abs/1312.6203
https://towardsdatascience.com/spectral-graph-convolution-explained-and-implemented-step-by-step-2e495b57f801
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Stable and Localized Filters

● Non-smooth spectral filter
 Not stable and delocalized

● Smooth spectral filter
 stable and localized

NIPS2017: M. Bronstein, J. Bruna, A. Szlam, X. Bresson, Y. LeCun
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Chebychev Convolution
● Use “Chebychev polynomials” for approximation in spectral domain

● Chebychev polynomials are recursively defined
  

● As
 Calculate approximation recursive
➢ No need for expensive decomposition!



Deep Learning for Graphs
Glombitza | RWTH Aachen | 61 02/17/20 | HAP Workshop Big Data Science

● Convolution on sphere
 Use pixelization of HEAPix
➢ Defines adjacency matrix

● Convolution via Chebychev expansion
 Framework allows to process

spherical data
 Several properties can changed
 Not very modular

Example: DeepSphere

https://arxiv.org/abs/1810.12186

Crosscheck: eigenvectors of Laplacian

Learned filters

https://github.com/SwissDataScienceCenter/DeepSphere

https://arxiv.org/abs/1810.12186
https://github.com/SwissDataScienceCenter/DeepSphere
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Illustrative Chebychev expansion
● Using the Chebychev expansion can be seen as

                    , weighting the neighborhood with the adjacency matrix

● Precise      : element     = number of walks of length     from node     to node 

Boris Knyazev, Towards Data Science

https://towardsdatascience.com/@BorisAKnyazev?source=post_page-----be6d71d70f49----------------------
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First Order Approximation
● Approximation of Chebychev:

● Evaluate for k=1
                                            , setting 

● Setting                   and remembering 
    

➢ Propagation rule of GCN (Part I.)
➢  GCN is first order approximation of ChebNet!

add self connection
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Example MNIST
● Projection of MNIST on graph

 Each nodes has 8 neighbors (kNN clustering)
 Fixed domain (adjacency matrix fixed)

● Use ChebNet  to classify handwritten digits

● MNIST
 10 classes
 Training 50k samples
 Testing 10 samples
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Practice III

● Try to reach accuracy > 97%
● Change:

  graph structure (change k)
 Learning rate, epochs, layers, 

feature dimensions, ...
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Eigenvectors of Graph Laplacian
● 20 first eigenvectors of 

● MNIST sample
Graph k=20
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Summary

● Using standard methods → Is your model able to exploit all symmetries in data?
➢ Choose architecture which best fits for your symmetry!

Contra
● GCNN can be very slow

 Euclidean convolution much faster!
● Many versions and implementations
● Very good implementations are rare

 Hard to say which one performs 
best

Pro
● Very flexible
● Can more intuitive on structured data 

than euclidean convolutions
● Able to exploit many symmetries

 Also on euclidean manifolds!
● No pixelisation effects

“In AI, ‘system’ should be understood as including the human engineers. Most of the
‘data → generalization’ conversion happens during model design.” - F. Chollet
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Links & Resources
● Deep Learning (Goodfellow, Bengio, Courville), MIT Press, ISBN: 0262035618
● Erdmann, Glombitza, Klemradt: Deep Learning in Physics Research”, lecture series at RWTH Aachen
● Francois Chollet: Deep Learning with Python, MANNING PUBLICATIONS 
● An Introduction to different Types of Convolutions in Deep Learning, Paul-Louis Pröve

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
● Michael M. Bronstein et al. : Geometric deep learning: going beyond Euclidean data: ArXiv:1611.08097
● Thomas Kipf, Max Welling: ArXiv:1609.02907
● M. Defferrard, X. Bresson, P. Vandergheynst: ArXiv:1606.09375
● J. Bruna, W. Zaremba, A. Szlam, Y. LeCun: ArXiv:1312.6203
● Y. Wang et al.: ArXiv:1801.07829
● M. Simonovsky, N. Komodakis: ArXiv:1704.02901
● E. Hoogeboom, J. Peters, T. Cohen, M. Welling: ArXiv/1803.02108
● Boris Knyazev, Towards data science, Tutorial on Graph Neural Networks for Computer Vision and Beyond
● M. Bronstein, J. Bruna, A .Szlam, X. Bresson, Y. LeCun: Tutorial Geometric Deep Learning on Graphs and 

Manifolds, https://www.youtube.com/watch?v=LvmjbXZyoP0&t=3813s, NIPS2017

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://www.youtube.com/watch?v=LvmjbXZyoP0&t=3813s


Big Data Science in Astroparticle Research, Aachen, 17-19 February 2020 

Graph Neural Networks

Jonas Glombitza, Martin Erdmann

Backup
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Batch Normalization
● Calculate batch-wise for each channel:

 Mean: 
 Variance:
 Add free parameters          to change scale and mean

➢

● Makes DNN robust against poor initializations
● Helps with vanishing gradient / less sensitive to high learning rates
● Has regularizing effect (no large weights, noise because of batch dependency)
● Reduce internal covariate shift
➢ Very successful for convolutional architectures
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Graph Convolution
● Convolutional layers are special case of Graph convolutional layers  
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