
Introduction to Deep Learning

Martin Erdmann, Peter Fackeldey

(slide credits: Jonas Glombitza)
RWTH Aachen

- Basic Methods & Techniques
- Deep Learning Frameworks
- Physics Examples and further Applications

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Time Schedule
Deep Learning Basics, code examples + hands on session (VISPA GPU cluster)

Machine Learning and Neural Networks
● Training, Generalization and Regularization
● Practice 1: CIFAR-10 Classification

Convolutional Networks
● Pooling, Padding, Striding + basic architecture
● Practice 2: CIFAR-10 Classification

22

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

This is a tutorial
→ Please ask questions!

3

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Deep Learning
● Machine Learning Basics
● Neural Networks

◆ Backpropagation, Optimization
◆ Activation, Initialization
◆ Preprocessing

 Artificial Intelligence - “The effort to automate intellectual tasks normally performed by humans”

ArXiv: 1502:03044

44

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Deep Learning
● Every minute:

◆ Instagram users post 200,000 photos
◆ Twitter users send 350,000 tweets
◆ Data on billion scale every day

GPU

performance Industrial

hype Growing

research

55

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Deep Learning in Physics
Deep Learning is state-of-the-art machine learning approach for everything related
to computer vision, speech and natural language processing and many artificial
intelligence tasks in general.

What about physics?
Ingredients:

● Complex problem (multivariate)
● Large amount of data (particle experiments)
● Stable software & computational techniques
● Sufficient computing resources
� Now is a good time!

66

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

When is it Deep?

mapping

features

simple features

hand designed
program

hand designed
features

more abstract
features mappinginput

input

input

input

output

output

output

output

mapping

mapping

rule based system

classic machine learning

deep learning

representation
learning

learned by
machine

“It’s deep if it has more than one stage of non-linear feature transformation” - Y. LeCun

77

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Machine Learning – Regression
● Data:

● Define model:
● with free parameters

● Define objective function (loss/cost)

● Train model (minimize objective)
� Optimize set of free parameters
◆ eg. use gradient descent

data

model

88

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Multidimensional Linear Models
● Predict multiple outputs from multiple inputs
● using linear function

● Example:

y

y

 Note: We define linear = affine in this course

Affine
transformation
= linear +
collinear shifts
allowed

99

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Non-Linear Network Models
 only describes linear models

● Use network with several linear layers:

● Model is still linear!

� Solution: Apply non-linear activation to
each element

1010

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Examples
● Rectified Linear Unit

● Sigmoid

● Hyperbolic tangent

Activation Functions
● Using an activation function the layer becomes a non linear mapping

� Allows for stacking several layers

output inputactivation

adaptive parameters

1111

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Neural Networks
Basic unit is called node/neuron (analogy to neuroscience)

● Strength of connections between neurons is specified by weight matrix
● Width: number of neurons per layer
● Depth: number of layers holding weights (do not count input layer)

1

2

3

n1

...

1

2

3

n2

...

1

2

n3

...

1

2

n0

...

hidden layer hidden layer
output layerinput layer

n3 outputsn2 neuronsn1 neuronsn0 inputs

W(1), b(1) W(2), b(2) W(3), b(3)

Deep Learning
1212

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Machine Learning Tasks

● Regression: Predict continuous label
● Classification: Separate into different classes (cats, dogs, airplanes, …)
● Can sometimes convert to the other

Regression Classification

1313

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Classification vs. Regression

Minimize mean-squared-error Minimize cross entropy

ClassificationRegression

no activation function

Linear Softmax

1414

y
y
1
y
2

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

y

x

Gradient Descent
● Minimize objective function by updating in opposite direction of gradient

iteratively

● Example: linear regression with mean squared error

gradient:
stepsize:

gradient pointing in the direction of
the steepest slope or grade

1515

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Backpropagation

● Network is series of simple operations (linear mappings/activations/loss ...)
● Each operations knows how to to calculate:

◆ Its local output (forward pass)
◆ Its derivative (backward pass)

● Use chain rule to evaluate gradient for each parameter
� Fast evaluation of the gradient → Backpropagation

x

y

+

W B

...

1616

adjust weights

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Learning Rate
● Learning rate determines speed of training
● High rate

◆ poor convergence behavior or none at all
● Small rate

◆ Very slow training or none at all
● Typical learning rate

● Advanced
● Reduce learning rate when loss stops decreasing

� increase sensitivity to smaller scales

Learning rate

1717

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Stochastic Gradient Descent - SGD

● Use small subset (mini batch) of dataset for calculating the gradient
◆ 1 epoch = full pass through training data set
◆ Reduces computational effort
◆ More updates per epoch → speeds up convergence
◆ Stochastic behavior → improve generalization performance

● Batch size is hyperparameter and mostly in order of ~32
“Friends don’t let friends use minibatches larger than 32” - Y. LeCun

Why Momentum Really
Works, Distill

1818

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Advanced Optimizer

Sebastian Ruder: http://ruder.io/optimizing-gradient-descent/

Momentum: Use past gradients (velocity)
● Faster convergence by damping oscillations and increasing the step size for

more informative gradients
Adaptive learning rate: Scaling using past gradients (Adagrad, Adam, Adadelta...)

● Use adaptive learning rates for each parameter

SGD
SGD + momentum

Convergence behavior of various optimizers

1919

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Deep Neural Networks
Feature Hierarchy: each new layer extract more abstract information of the data.
Probabilistic Mapping: learns to combine the extracted features

Train model (to find that minimizes objective) is automatic process.

1

2

3

1

2

3

1

2

1

2

hidden layer hidden layer
output layerinput layer

W(1), b(1)
W(2), b(2) W(3), b(3)

output inputactivation

adaptive parameters

2020

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

● Weights need different initial values → symmetry breaking
● Scale of weights very important

◆ Too large → exploding signals & gradients
◆ Too small → vanishing signals & gradients

● For forward pass in each layer:

� Depends from activation function and number of in and outgoing nodes

● Can be sampled from Gaussian or uniform distribution (Var. scaled by factor of 3)

Initialization

● For backward pass in each layer:

→ For ReLU
Glorot, Bengio He et al.

No learning!

→ For tanh

2121

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Data Preprocessing
● Input features of dataset should be on same scale

◆ Prevent particular sensitivity to few features
● Common normalization strategies

◆ Limit range between [0, 1] or [-1,1]
◆ Standard normalization:
◆ Whitening: standard normalization + decorrelation

2222

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Generalization
● Training, Validation, Test
● Under- and Overfitting
● Regularization

2323

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Universal Approximation Theorem
A feed-forward network with a linear output and at least one hidden layer with a
finite number of nodes can (in theory) approximate any reasonable function to
arbitrary precision.

● Network design considerations → feature engineering, network architecture
� Shallow networks often show bad performance → train deep models!

● Fit complicated function
● Use neural network
● 2 hidden layers a 30 nodes

2424

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Under- and Overfitting

underfitting overfitting

● Challenging to find a good network design
● Under-complex models show bad performance
● complex models are prone to overfitting

� Model memorizes training data under loss of generalization performance

2525

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Generalization & Validation
A complex network can learn any function, how can we monitor overfitting?

Generalization
Unknown true distribution from which data is drawn.
Trained model provides prediction based on this limited set
� How good is the model when faced with new data?

Validation
Estimate generalization error on data not used during training.
Split data into:

● Training set: to train the network
● Validation set: to monitor and tune the training (training of hyperparameter)
● Test set: to estimate final performance. Use only once!

2626

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Under- and Overtraining
● During training monitor the loss separately for training and validation set

Lo
ss

training steps

 validation set

training set

Typical observation

Training loss:
● decreases

Validation loss:
● is higher than training loss → generalization gap
● has a minimum → overtraining

overtraininggeneralization error

2727

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Parameter Norm Penalties

L2 norm: (weight decay)
● Contribution to loss dominated by largest weights
● Decay of weights which not contribute much to the

reduction of the objective

L1 norm: (lasso)
● Constant shrinking of parameters
● Allows for sparse network (feature selection mechanism)

ElasticNet: Combination of L1 and L2 norm

Only directions along which the parameters
contribute significantly to reducing the objective
are preserved relatively intact

small decay

large decay

Function of absolute value

2828

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Dropout
Randomly turn of fraction of neurons in each training step

● Adds noise to process of feature extraction
● Force network to train redundant representations
● During validation and test: no dropout applied → large ensemble of “submodels”

Typical fraction
standard network dropout applied

2929

X X

XX

X

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Practice I
● Software: TensorFlow 2.1

(using Keras)
● CIFAR Example

Facebook

Google

Amazon Microsoft

Academic research

3030

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

TensorFlow
“Open source software library for numerical computation
using data flowing graphs”

● Nodes represent mathematical operations
● Graph edges represent multi-dimensional data arrays

(tensors) which flow through the graph

● Supports:
◆ CPUs and GPUs
◆ Desktops and mobile devices

● Released 2015, stable since Feb. 2017
● Developer: Google Brain

3131

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Keras
● Will use keras in this tutorial (TensorFlow backend) - https://keras.io
● High-level neural networks API, written in Python
● Concise syntax with many reasonable default settings
● Useful callbacks for monitoring the training procedure
● Nice Documentation & many examples and tutorials
● Can run on top of TensorFlow, Theano and CNTK
● Comes with TensorFlow

3232

https://keras.io/

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Create a VISPA account
Go here: https://vispa.physik.rwth-aachen.de/

Register now!!!
33

https://vispa.physik.rwth-aachen.de/

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

CIFAR-10 Classification Task
● 60,000 images with 10 classes
● Input , for 32 x 32 x 3 = 3072 input features
● Output , one for each class (one-hot encoded)

◆ frog, airplane, automobile, bird, cat, deer, dog, horse, ship, truck

● Model should learn to estimate the
conditional probability distribution

● outputs probability for each class
●
● Take highest as prediction
● Value of states certainty

3434

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Fully Connected Network

● Input layer: Flatten image to 32 x 32 x 3 = 3072 vector
● Use fully connected network with some hidden layers, ReLU and dropout
● Output layer: 10 layer output with softmax
● Measure performance with independent validation set

... ...

1

2

10

......

3535

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

How to train your Model?
I. Define Model

� Add layers, nodes, regularization, activation functions, ….)
II. Compile Model

� Set Loss, optimizer settings and useful metrics
III. Fit Model

� Set number of iterations and train model on given data
 from tensorflow import keras
 layers = keras.layers
 models = keras.models

 # setup and train a 3-layer regression network with Keras
 model = models.Sequential()
 model.add(layers.Dense(4, activation='relu', input_dim=2))
 model.add(layers.Dense(4, activation='relu'))
 model.add(layers.Dense(1, activation='tanh'))
 model.compile(loss='MSE', optimizer='SGD', metrics=['accuracy'])
 model.fit(xdata, ydata, epochs=200)

1

2

3

4

y
 x1

hidden layer

output layer

 x2

input layer
1

2

3

4

3636

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Opens the example
page

● Developed in Aachen (group of Prof. Erdmann)
● GPU extension

◆ 29 NVIDIA GPUs
● Accessible via https://vispa.physik.rwth-aachen.de/

3737

https://vispa.physik.rwth-aachen.de/

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Open the CIFAR example

3838

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Open train_nn.py

3939

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning
4040

Feel free to modify the model!

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

CIFAR 10: Exercise
● Model:

◆ Add layers or nodes
◆ Add regularization

● Dropout, penalties
◆ Activation functions

● Modify
◆ Batch size, epochs
◆ Optimizer, learning rate

model = tf.keras.models.Sequential(
 [
 tf.keras.layers.Flatten(input_shape=(32, 32, 3)),
 tf.keras.layers.Dense(256, activation="relu"),
 tf.keras.layers.Dropout(0.3),
 tf.keras.layers.Dense(256, activation="relu"),
 tf.keras.layers.Dense(10, activation="softmax"),
],
 name="nn",
)

model.fit(
 x_train_norm,
 y_train_onehot,
 batch_size=32,
 epochs=20,
 verbose=2,
 validation_data=(x_valid_norm, y_valid_onehot),
)

4141

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Results

● Model roughly converged, accuracy ~ 50%
● Large generalization gap
● Fully connected network is prone to overtraining

4242

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Feature Correlation

● Confusion matrix shows which classes have correlated features
◆ Cat←→dog, truck←→automobile etc.

4343

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Convolutional
Neural Networks
● Natural Images
● Convolutional Layers

◆ Strides, Pooling, Padding

https://arxiv.org/abs/1311.2901

4444

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Natural Images

Automate task for humans, very challenging for machine learning models:
● High dimensional input (up to millions of pixels)
● Many possible classes depending on task
● Multiple variations

◆ Viewing angle, light conditions, deformation, object variations, occlusions….
4545

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Fully Connected Network
● Input layer: Flatten image to 32 x 32 x 3 = 3072 vector
● Fully connected: every pixel connected with each other
� Huge number of adaptive parameters per layer
� No use of translational variance
� No prior on local correlations

... ...

1

2

10

......

4646

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

2D Convolutional Neural Networks

● Consider input volume (width x height x depth), eg. 3 color channels
● Use convolutional filter with smaller width and height but same depth
● Slide several filters over entire volume and calculate linear transformation to get

one output value for each position

32
height

3 depth

32
width

3
5

5

input
filter

output

4747

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning48

Convolutional Operation

● blabla

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

● Filter scans input for the presence of one specific feature

● Convolutional network learns task related filters itself
● Use multiple filters and stack the resulting feature maps depth-wise

2D Convolutional Neural Networks

32
height

3 depth

32
width

-1 -1-1

-1 -18

-1 -1-1

-1 -1-1

2 22

-1 -1-1

-1 2-1

-1 -12

2 -1-1

Edge Horizontal
edge

Diagonal
edge

feature maps

filtersinput

4949

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

2D Convolutional Operation
Stack multiple convolutional layers + activations

● Each convolution acts on feature map of previous layer
● Increasing feature hierarchy
● Increasing of receptive field

3 depth

Conv.
+ ReLU
5x5x3x8

Conv.
+ ReLU

5x5x8x16

8 depth 16
depth

receptive field

receptive field

In
cr

ea
se

 o
f r

ec
ep

tiv
e

fie
ld

5050

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Feature Hierarchy

https://arxiv.org/abs/1311.2901
5151

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Spatial Output Size
Standard convolution reduces the output size due to extent of the filter
� Sets upper bound to the number of convolutional layers

● Example: Convolution with 3 x 3 filter

7

7

5

5

5252

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Padding
Add zeros around image borders to conserve the spatial extent of the input
� Prevents fast shrinking of the input data (image)

● Example: Convolution with 3 x 3 filter and padding

7

7

0 0 00 0 0 0
0
0
0
0
0
0
0

0

0
0

0
0
0

0
0 00 0 00 0 0

0

0

0

7
7

7 Paul-Louis Pröve,
Towards Data Science

5353

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

7

Striding
Using a larger stride when sliding over the input, reduces the output size
� Useful for switching to smaller image sizes / larger scales

● Example: Convolution with 3 x 3 filter and stride of 2

7

7

3

3

Paul-Louis Pröve,
Towards Data Science

5454

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Dilating
Dilation leaves holes in where the filter is applied (also called atrous convolution)

● Useful for aggressively merging spatial information in large images
● Allows for a large field of view

● Example: Convolution with 3 x 3 filter and dilation 1

7

7

3

3

Paul-Louis Pröve,
Towards Data Science5555

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Pooling
Sub-sample the input to reduce the output size
� Used to merge semantically similar features

3 12

0 35

9 34

0

0

1

2 31 1

5 3

9 3

2.
5 1

4 2

max pooling

average pooling

Average pooling: Take the mean of each patch
Max pooling: Take the maximum of each patch
Global pooling: Take maximum/average over complete image

● Example:
Pooling using 2 x 2 patches
and a stride of 2

5656

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Convolutional Pyramid
ConvNet architectures usually have a pyramidal shape. For deeper layers:

● Increasing of feature space
● Decreasing of spatial extent

� Spatial information is converted to representational features with increasing
hierarchy

...
Conv. Conv.

5757

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Summary
● 2D Convolution acts on 3D input (width x height x depth)
● Slide small filter over input and make linear transformation (dot product + bias)
● Hyperparameter:

◆ Size of filter, typically (1 x 1), (3 x 3), (5 x 5) or (7 x 7)
◆ Number of filters (feature maps)
◆ Padding (maintain spatial extent)
◆ Striding or pooling (reduce spatial extent)
◆ Dilation to merge information over larger scales

● Reduction of parameters using symmetry in data:
◆ Prior on local correlations (use small filters)
◆ Translational invariance (weight sharing)

5858

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Convolutional Layers - Keras
● Same Syntax as for fully connected layers

● Layer with 32 filters
● Size of filter 5x5 pixels
● Stride of 2 in both directions
● Use padding = ‘same’ to keep spatial dimension (else padding = ‘valid’)
● And ReLu activation

● Pooling layer with pooling size of 2x2 pixels and a stride of 2 in both dimensions

● Layer flattens output to vector → allows use of Dense layers after Convolutions

● Pooling operation on complete feature map → (remove all spatial dimensions)

 layers.Convolution2D(32, kernel_size=(5, 5), padding='same', activation='relu', strides=(2, 2))

 layers.MaxPooling2D((2,2), strides=(2, 2)) // layers.AveragePooling2D((2,2), strides=(2, 2))

 layers.Flatten()

 layers.GlobalMaxPooling2D() // layers.GlobalAveragePooling2D()

5959

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Open train_cnn.py

6060

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

CIFAR 10 – CNN: Exercise
Model – add:

● Conv. layers and filters
● Pooling, Dense (FC) layers
● Regularization (after Flatten)

Model – modify:
● Batch size, epochs
● Kernel size, strides
● Optimizer, learning rate

� Can you achieve >75% validation accuracy?

model = models.Sequential([
 tf.keras.layers.Convolution2D(32, kernel_size=(5, 5), strides=(2, 2),
activation="relu", input_shape=(32, 32, 3)),
 tf.keras.layers.Dropout(0.3),
 tf.keras.layers.Convolution2D(64, kernel_size=(5, 5), strides=(2, 2),
activation="relu"),
 tf.keras.layers.Dropout(0.3),
 tf.keras.layers.Convolution2D(128, kernel_size=(5, 5), strides=(2,
2), activation="relu"),
 tf.keras.layers.Dropout(0.3),
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(128, activation="relu"),
 tf.keras.layers.Dropout(0.3),
 tf.keras.layers.Dense(10, activation="softmax"),
])

6161

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

model = models.Sequential([
 layers.Convolution2D(16, kernel_size=(3, 3), padding='same', activation='elu',

 input_shape=(32, 32, 3)),
 layers.Convolution2D(32, kernel_size=(3, 3), padding='same', activation='elu'),
 layers.MaxPooling2D((2,2)),
 layers.Convolution2D(32, kernel_size=(3, 3), padding='same', activation='elu'),
 layers.Convolution2D(64, kernel_size=(3, 3), padding='same', activation='elu'),
 layers.MaxPooling2D((2,2)),
 layers.Convolution2D(64, kernel_size=(3, 3), padding='same', activation='elu'),
 layers.Convolution2D(128, kernel_size=(3, 3), padding='same', activation='elu'),
 layers.MaxPooling2D((2,2)),
 layers.Convolution2D(128, kernel_size=(3, 3), padding='same', activation='elu'),
 layers.Convolution2D(256, kernel_size=(3, 3), padding='same', activation='elu'),
 layers.GlobalMaxPooling2D(),
 layers.Dropout(0.5),
 layers.Dense(128, kernel_regularizer=keras.regularizers.l1_l2(l1=0.025, l2=0.025),

 activation='elu'),
 layers.Dropout(0.5),
 layers.Dense(10, activation='softmax')])

CIFAR 10 – Deep Convolutional Network

6262

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Results

6363

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Links & Resources
● Erdmann, Glombitza, Klemradt: Deep Learning in Physics Research, Summer Term Lecture Series RWTH
● TensorFlow Playground: https://playground.tensorflow.org
● Deep Learning (Goodfellow, Bengio, Courville), MIT Press, ISBN: 0262035618
● http://www.deeplearningbook.org/
● Neural Networks and Deep Learning (Nielson) - http://neuralnetworksanddeeplearning.com/
● CS231n - Convolutional Neural Networks for Visual Recognition (Kaparthy)
● http://cs231n.stanford.edu/syllabus.html
● Deep Learning by Google (Vanhoucke), Udacity https://www.udacity.com/course/deep-learning--ud730
● An Introduction to different Types of Convolutions in Deep Learning, Paul-Louis Pröve
● https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
● Deep Learning with Python, Francois Chollet
● The CIFAR-10 dataset - https://www.cs.toronto.edu/~kriz/cifar.html
● Deep Learning-based Reconstruction of Cosmic Ray-induced Air Showers - Erdmann, Glombitza, Walz

https://doi.org/10.1016/j.astropartphys.2017.10.006

6464

https://playground.tensorflow.org/
http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/
http://cs231n.stanford.edu/syllabus.html
https://www.udacity.com/course/deep-learning--ud730
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1016/j.astropartphys.2017.10.006

Introduction to Deep Learning

Martin Erdmann, Peter Fackeldey

(slide credits: Jonas Glombitza)
RWTH Aachen

Additional Material

65

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Toptagging in HEP: Motivation

6666

● Many BSM searches with t t̅ final
state

● Especially interesting in BSM
Higgs physics

strong coupling to top quarks
● Topology: 2 fatjets in the final state
● We need a proper top tagging

algorithm!
● Classic approach: use

N-subjettiness and soft drop mass
● Our approach: use DNNs and

CNNs

CMS PAS HIG-17-027

Top tagging at the LHC experiments with proton-proton collisions at √s = 13TeV

https://www.researchgate.net/publication/280882365_Top_tagging_at_the_LHC_experiments_with_proton-proton_collisions_at_s_13TeV

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Toptagging in HEP: Dataset

6767

● We have 2 classes: top jets and QCD jets (100000 jets per class)
● Each jet has 200 constituents (padded with zeros)
● Generated with pythia8, √s = 14 TeV, no pileup
● Fatjets are reconstructed with anti-kt algorithm (delta R = 0.8)
● In each generated event only the leading jet is considered with:

550 < pT < 650 GeV and |η| < 2
● We prepared the dataset in 2 formats (numpy arrays):

○ eta, phi & four vector (E, px, py, pz) for each constituent in each jet,
shape=(njets, 200, 6, 1)

○ Fatjet energy deposition as 2d-image in eta-phi plane with 40x40 pixel
(already normalized to unity),
shape=(njets, 40, 40, 1)

Link to dataset

https://desycloud.desy.de/index.php/s/llbX3zpLhazgPJ6

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Toptagging in HEP: Exercise

68

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Toptagging in HEP: Exercise

69

● Two files:
◆ jet_4vectors.py
◆ jet_cnn.py

● Open results in dir:
◆ /train-4vectors-XXX.X
◆ /train-images-XXX.X

pygpu

Model – add:
● Conv. layers and filters
● Pooling, Dense (FC) layers
● Regularization (after Flatten)

Model – modify:
● Batch size, epochs
● Kernel size, strides
● Optimizer, learning rate

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Deep Learning in CMS (Software)

7070

● Software in CMSSW 11X (https://github.com/cms-sw/cmsdist):
○ Many data-science tools: pandas, numpy, scikit-learn, scipy
○ Comes with tensorflow, theano, keras CMSSW > 94X
○ Evaluation of tf.graph in CMSSW: https://github.com/riga/CMSSW-DNN

● LCG software stacks (latest one “96”): http://lcginfo.cern.ch/
○ “source /cvmfs/sft.cern.ch/lcg/views/LCG_96/x86_64-centos7-gcc62-opt/setup.sh”

● One of the main problems: how to go from ROOT to numpy?
● 2 libraries:

○ uproot: https://github.com/scikit-hep/uproot (does not depend on ROOT!!!)
○ root_numpy: https://github.com/scikit-hep/root_numpy

https://github.com/cms-sw/cmsdist
https://github.com/riga/CMSSW-DNN
http://lcginfo.cern.ch/
https://github.com/scikit-hep/uproot
https://github.com/scikit-hep/root_numpy

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Advanced Computer Vision Methods
● Deep Convolutional Networks
● Batch Normalization, Shortcuts
● Residual Networks, Inception

7171

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Obstacles when Going Deeper

● Neural networks should get monotonously better when adding more layers
● Problems

◆ Convolutional filter show redundant behavior
◆ Bad initialization
◆ Internal covariate shift – need to constantly adapt changes in the earlier layer
◆ Vanishing gradients – gradients become too small
◆ Shattered gradients – gradients become white noise

7272

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Inception Module

Idea: Factorize convolution operation
● Use different small convolutions in

parallel and concatenate outputs
● Massive use of (1 x 1) convolutions

� Increase model complexity
� Make model sensitive to different scales

Key observation: Convolutional filters show redundant behavior

7373

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Xception (“Extreme Inception”)
● Idea: If spatial correlations and cross-channel correlations are sufficiently

decoupled it’s better to compute them separately
● Depthwise separable convolutions

◆ Perform depthwise separate convolution on each channel
◆ Perform pointwise convolution (1 x 1) across channels

64
3

3
1x

64 1
1

1x

64 64 64
Separate convolution per channel
no bias, no activation

Standard convolution: 7474

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Residual Unit

● Weight block learns small residual on top of input
◆ Output of residual unit

● Shortcut let gradient propagate easily to earlier layers
● Later layers can easily turn weights to zero by

Idea: Residual unit consisting of small network and a shortcut (identity mapping)

Up to several of
hundreds layer deep!

7575

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning76

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Batch Normalization
● Calculate batch-wise for each channel:

◆ Mean:
◆ Variance:
◆ Add free parameters to change scale and mean

�

● Makes DNN robust against poor initializations
● Helps with vanishing gradient / less sensitive to high learning rates
● Has regularizing effect (no large weights, noise because of batch dependency)
● Reduce internal covariate shift
� Very successful for convolutional architectures

7777

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Self Normalizing Networks
● Batch normalization adds perturbations for

training fully connected networks
● Use activation function which ensures standard

normalized output:
● Stabilize the training
● Needs LeCun initialization & Alpha-dropout
� Allow for very deep networks!

Requirements:
● negative & positive values to control the mean
● Slope < 1 for damping the variance
● Slope > 1 to rise the variance

7878

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Normalization
Networks learn best when data is normalized
� Normalize data in between the layers
✔ Prevent very large activations (regularization) and very small gradients
✔ Minimize covariate shift (perturbation due to simultaneous layer update)
✔ Weights on same scale in each layer→ help against bad initializations

● Convolutional approach → Batchnormalization
◆ Normalize feature activations over a batch if images

● Fully Connected approach → Selu
◆ Use activation function which ensures

standard normalized output
7979

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Open train-CNN.py

8080

Design your own network - using ResNet or Inceptions and
add BatchNormalization!

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning

Code Examples – Advanced API
Inception Module

 from tensorflow import keras
 layers = keras.layers

 def inception_unit(x0):
 x1 = layers.Conv2D(16, (1, 1), padding='same', activation='relu')(x0)
 x1 = layers.Conv2D(16, (3, 3), padding='same', activation='relu')(x1)

 x2 = layers.Conv2D(16, (1, 1), padding='same', activation='relu')(x0)
 x2 = layers.Conv2D(16, (5, 5), padding='same', activation='relu')(x2)

 x3 = layers.Conv2D(16, (1, 1), padding='same', activation='relu')(x0)

 x4 = layers.MaxPooling2D((3, 3), strides=(1, 1), padding='same')(x0)
 x4 = layers.Conv2D(64, (1, 1), padding='same', activation='relu')(x4)
 return layers.concatenate([x1, x2, x3, x4], axis=-1)

 x = ... # some tensor of shape say (n, nx, ny, 64)
 x = inception_unit(x)
 x = inception_unit(x)

Residual Module
 from tensorflow import keras
 layers = keras.layers

 def residual_unit(x0):
 x = layers.Conv2D(64, (1, 1), padding="same")(x0)

 x = layers.Activation("relu")(x)
 x = layers.Conv2D(64, (3, 3), padding="same")(x)

 return layers.add([x, x0])

 x = ... # some tensor of shape say (n, nx, ny, 64)
 x = residual_unit(x)
 x = residual_unit(x)

8181

