Introduction to Deep Learning

- Basic Methods & Techniques
- Deep Learning Frameworks
- Physics Examples and further Applications

Martin Erdmann, Peter Fackeldey

(slide credits: Jonas Glombitza)
RWTH Aachen




Time Schedule

Deep Learning Basics, code examples + hands on session (VISPA GPU cluster)

Machine Learning and Neural Networks
- Training, Generalization and Regularization

- Practice 1: CIFAR-10 Classification

Convolutional Networks
- Pooling, Padding, Striding + basic architecture

- Practice 2: CIFAR-10 Classification
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Should you ask a Question
during Seminar?
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This is a tutorial
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) ; 3 ~ - =
A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
- mountain in the background.

ArXiv: 1502:03044

KUNSTLICHE INTELLIGENZ

Schlau in zwei Stunden

VON ALEXANDER ARMBRUSTER AKTUALISIERT AM 27.09.2017 11:4

Machine Learning Basics

Neural Networks
Backpropagation, Optimization

+ Activation, Initialization
Preprocessing

Artificial Intelligence - “The effort to automate intellectual tasks normally performed by humans”
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Deep Learning

+ Twitter users send 350,000 tweets MAQ!GALY"GS

HUNDREDS

N[TW

- Data on billion scale every day

PRALLEL =
"' amazon

- Every minute )
+ Instagram users post 200,000 photos i igggNtB
twitter Arcum

«=a==NVIDIA GPU Single Precision

GeForce 780 Ti 1/0
/

Intel CPU Single Precision

Hype or Reality?

EXHIBIT 1: Al CAPITAL CONTINUES TO CLIMB Academic Publications about Deep Leaming

Total funding for artificial intelligence startups from venture capitalists,

Deep Learning
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Deep Learning in Physics

Deep Learning is state-of-the-art machine learning approach for everything related
to computer vision, speech and natural language processing and many artificial

intelligence tasks in general.

SKA Science
. A h- uploads to
What about physics? FEVe e, facebook.
- | Google  1g0pg
Ingredients: 98PB

- Complex problem (multivariate) Y Y SKA
- Large amount of data (particle experiments) nvean  OB@
. . 1 Petabyte BDDPB
- Stable software & computational techniques
- Sufficient computing resources

» Now is a good time! nl.

Tensor
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When is it Deep?

rule based system
hand designed
program learned by
machine

;

classic machine learning

hand designed
features

5

representation
learning

deep learning

“It's deep if it has more than one stage of non-linear feature transformation” - Y. LeCun
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Machine Learning — Regression
- Data: {xiayi}7 1= 17"'7N

\ - Define model:

K '. * Ym(x,0) = Wz + b with free parameters 6 = (W, )

Yy . o - Define obje]\?tive function (loss/cost)
o &°® 1
°s"e data J(H) — N Z[ym(%,@) - yz‘]Q

. e =1

» Train model (minimize objective) 6 = argmin|J(0)]

X » Optimize set of free parameters 6 = (W, b)

*+ eg. use gradient descent
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Multidimensional Linear Models

- Predict multiple outputs ¥ = (y1, ..., ¥n) from multiple inputs X = (1, ..., Zn)
- using linear function y = Wx+b

5 ) Note: We define linear = affine in this course
- Example: T €R”, y € R

(Wn Wia VV13)>< 2 _|_(b1>:<y1>
War Wiy Was - b2 Y2
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Non-Linear Network Models

Wx + b only describes linear models
- Use network with several linear layers:

B o=wWg 4+ pb)

y=WAp +p®
- Model is still linear!

y=w® (me X b<1>) e
y = WAWD 2 4L W@y 4 p3)

Ve

%% b

> Solution: Apply non-linear activation 4 to
each element — h =og(h') = c(Wz +b)
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Activation Functions

- Using an activation function the layer becomes a non linear mapping

:» Allows for stacking several layers adaptive Weters
—oc(Wx+Db
Y= ( )
Examples output activation  input
- Rectified Linear Unit
o (x) = max(0, ) Re!_U S|grt10|d i é
. Siamoid '_i | i
o(z) = L X 0 | con RIS S8 B Tt
Lrer B
- Hyperbolic tangent ~ -1 p oo -1
ot2 _ 1 ; ; ; ; . ; ; .
o(r) = — -1 0 1 -1 0 1 -1 0 1
e +1 Wx + b Wx +b Wx + b
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Neural Networks

Basic unit (W x + b) is called node/neuron (analogy to neuroscience)
- Strength of connections between neurons is specified by weight matrix 11/

- Width: number of neurons per layer

- Depth: number of layers holding weights (do not count input layer)
hidden layer hidden layer

O
W) p(1)

n n 3
=) W 5@ \"2/7 we,n )
n, inputs n, neurons n, neurons n, outputs

Deep Learning
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Machine Learning Tasks

Regression

A

- Regression: Predict continuous label ¥
- Classification: Separate into different classes (cats, dogs, airplanes, ...)
- Can sometimes convert to the other
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Classification vs. Regression

Linear Softmax
A Y A
no activation function Y2 Y yi(2) e%i
> 7 — .
< Z’L e~i
Z
Minimize mean-squared-error Minimize cross entropy
1
JO) = = [ys = yo(a))? J(0) = = yilog[ym ()]
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Gradient Descent

- Minimize objective function J(#) by updating ¢ in opposite direction of gradient

iteratively
— ~ d.J
gradient: d.J/df 00— ——
stepsize: =« do
- Example: linear regression with mean squared error
A A
o..::.. Wit
oo dJ
.:o' S
> >
X Wi Wit W
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Backpropagation
y = U(WX + b) adjust weights

X ~-& (+) Lo (L
DA S A ¢

y «

- Network is series of simple operations (linear mappings/activations/loss ...)
- Each operations knows how to to calculate:
+ Its local output (forward pass)
+ Its derivative (backward pass)
- Use chain rule to evaluate gradient for each parameter
» Fast evaluation of the gradient — Backpropagation
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Learning Rate

- Learning rate & determines speed of training
- High rate

+ poor convergence behavior or none at all
- Small rate

+ Very slow training or none at all
- Typical learning rate oo = 10™°

- Advanced

- Reduce learning rate when loss stops decreasing
" increase sensitivity to smaller scales
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Stochastic Gradient Descent - SGD

7
7

]/
/

/ // A
// Optimum
/ / / / o
(A |

Solution

DN
A

Why Momentum Really
Works, Distill

. Use small subset (mini batch) of dataset for calculating the gradient
+ 1 epoch = full pass through training data set
+ Reduces computational effort
+ More updates per epoch — speeds up convergence
+ Stochastic behavior — improve generalization performance
. Batch size is hyperparameter and mostly in order of ~32

“Friends don't let friends use minibatches larger than 32” - Y. LeCun
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Advanced Optimizer

Momentum: Use past gradients (velocity)

- Faster convergence by damping oscillations and increasing the step size for
more informative gradients

Adaptive learning rate: Scaling using past gradients (Adagrad, Adam, Adadelta...)
- Use adaptive learning rates for each parameter

Convergence behavior of various optimizers
/7 N\
— SGD + momentum . | — Momentum

e SGD
== NAG

- NAG
- Adagrad — Adagrad
Adadelta Adadelta
Rmsprop

- Momentum

,f Rmsprop

iRy
R

0

()
WY

L

5 RS

-4

=15

Sebastian Ruder: http://ruder.io/optimizing-gradient-descent/ |
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Deep Neural Networks

Feature Hierarchy: each new layer extract more abstract information of the data.
Probabilistic Mapping: learns to combine the extracted features

Train model (to find 8 = {W,, b; } that minimizes objective) is automatic process.

hidden layer hidden layer

adaptive parameters

/y :/O'<WX + b)

output activation input

objective : J(0) = Z Y (24, 0) — i)

1

timization : 2 0 |6 0—a’
iterative update OptIzation - do — IR
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Initialization

- Weights need different initial values — symmetry breaking
- Scale of weights very important
+ Too large — exploding signals & gradients } _
. : _ No learning!
+ Too small — vanishing signals & gradients

- For forward pass in each layer: - For backward pass in each layer:
Var|lx] =1 Var|lAxz;) =1
» Depends from activation function and number of in and outgoing nodes
2 2
Var[W] = — For tanh VQ,T[W] — — For ReLU
Nin + Nout  Glorot, Bengio TNin Heetal

- Can be sampled from Gaussian or uniform distribution (Var. scaled by factor of 3)
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Data Preprocessing

- Input features of dataset should be on same scale
+ Prevent particular sensitivity to few features

- Common normalization strategies
+ Limit range between [0, 1] or [-1,1]
- Standard normalization: ((%;) =0 & o(x;) =1
+ Whitening: standard normalization + decorrelation

original data decorrelated data whitened data

10
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Generalization

- Training, Validation, Test
- Under- and Overfitting
- Regularization

— Model
— Truth
Data

X
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Universal Approximation Theorem

A feed-forward network with a linear output and at least one hidden layer with a
finite number of nodes can (in theory) approximate any reasonable function to

arbitrary precision.

- Network design considerations — feature engineering, network architecture
» Shallow networks often show bad performance — train deep models!

. Fit complicated function
. Use neural network
. 2 hidden layers a 30 nodes
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Under- and Overfitting

- Challenging to find a good network design
- Under-complex models show bad performance
- complex models are prone to overfitting
© Model memorizes training data under loss of generalization performance

— Model —— Model —— Model
—— Truth
Data

—— Truth s —— Truth
Data

Data

X X X
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Generalization & Validation

A complex network can learn any function, how can we monitor overfitting?

Generalization

Unknown true distribution Ptrue(T,¥) from which data is drawn.

Trained model y,,,(x) provides prediction based on this limited set
» How good is the model when faced with new data?

Validation
Estimate generalization error on data not used during training.
Split data into:

- Training set: to train the network

- Validation set: to monitor and tune the training (training of hyperparameter)
- Test set: to estimate final performance. Use only once!
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Under- and Overtraining

. During training monitor the loss separately for training and validation set

A Typical observation

generalization error overtraining

training steps

Loss

training set
>

Validation loss:
- 1S higher than training loss — generalization gap

- has a minimum — overtraining

Training loss:
- decreases
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Parameter Norm Penalties

small decay
min J(6)

L2 norm: (weight decay) \||0||5 = A\(6% 4 65 + ...) W,
- Contribution to loss dominated by largest weights

NIEIE:
- Decay of weights which not contribute much to the 191k
reduction of the objective J(6) "
large decay

L' norm: (lasso) A||0||1 = A(|61] + |62] + ...) W,

- Constant shrinking of parameters A6 |1

- Allows for sparse network (feature selection mechanism)

Wy

ElasticNet: Combination of L' and L2 norm
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Dropout

Randomly turn of fraction Pdrop 0f neurons in each training step

Typical fraction
0.2 < pdrop < 0.5

- Adds noise to process of feature extraction
- Force network to train redundant representations

DRuring, validation and.test no.dropout applied — large ensemble of *submodels



Practice |

- Software: TensorFlow 2.1
(using Keras)
- CIFAR Example

1000

750

500

250

Google

TensorFlow Keras

CHEN
UNIVERSITY

Academic research

1
i
I
i
I
i
I
i
v

Microsoft

Facebook i
\ ! Amazon
L |

Caffe PyTorch  Theano MXNet Chainer CNTK

arXiv mentions as of 2018/03/07 (past 3 months)

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning



TensorFlow

“Open source software library for numerical computation
using data flowing graphs”

- Nodes represent mathematical operations
Graph edges represent multi-dimensional data arrays
(tensors) which flow through the graph

Supports:

+ CPUs and GPUs

+ Desktops and mobile devices
Released 2015, stable since Feb. 2017
Developer: Google Brain
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Keras

- Will use keras in this tutorial (TensorFlow backend) - https://keras.io
- High-level neural networks API, written in Python

- Concise syntax with many reasonable default settings

- Useful callbacks for monitoring the training procedure

- Nice Documentation & many examples and tutorials

- Can run on top of TensorFlow, Theano and CNTK

- Comes with TensorFlow

Tensor Keras

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning
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https://keras.io/

Create a VISPA account

Go here: https://vispa.physik.rwth-aachen.de/

30° 0 A R ACENOYD
ff-(-90%" [ [ g~ +f-gor V.. :)

\ ‘ - /7/
Open source web-based front- BINNNN L  SRETI
end for data analysis PSS

.
0.950 0.959 0.968 0.977 0.986
Login / Register Energy (normed) .

Register now!!!
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https://vispa.physik.rwth-aachen.de/

CIFAR-10 Classification Task

- 60,000 images with 10 classes

- Input x = (21, T2, ..., T3072), for 32 x 32 x 3 = 3072 input features

- Output Y = (¥1, %2, ..., ¥10), one for each class (one-hot encoded)
+ frog, airplane, automobile, bird, cat, deer, dog, horse, ship, truck

truck
ship . Model should learn to estimate the
lfll‘j;:e conditional probability distribution
élogn . outputs probability for each class
CE.i:t * Ym($z|9) — (pcatapdoga )
o . Take highest p; as prediction
Brplane . Value of p; states certainty

0.0 0.5 1.0

Score
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Fully Connected Network

- Input layer: Flatten image to 32 x 32 x 3 = 3072 vector

- Use fully connected network with some hidden layers, ReLU and dropout
- Output layer: 10 layer output with softmax

- Measure performance with independent validation set
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How to train your Model?

I. Define Model
. Add layers, nodes, regularization, activation functions, ....)
I1. Compile Model
 Set Loss, optimizer settings and useful metrics
I11. Fit Model
» Set number of iterations and train model on given data

from tensorflow import keras
layers = keras.layers
models = keras.models

# setup and train a 3-layer regression network with Keras
model = models.Sequential

model.add(layers.Dense(4, activation="relu’, input_dim=2
model.add(layers.Dense(4, activation='relu'
model.add(layers.Dense(1, activation='tanh'
model.compile(loss='MSE', optimizer='SGD', metrics=|'accuracy’
model.fit(xdata, ydata, epochs=200

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning
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+
v WS: VISPA Cl
3 File Manager
B CodeEditor
>_ Terminal

o i | Opens the example
= pe page

4 Usermanagement

o Preferences

VISPA®

- Developed in Aachen (group of Prof. Erdmann)
- GPU extension
+ 29 NVIDIA GPUs
- Accessible via https://vispa.physik.rwth-aachen.de/
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https://vispa.physik.rwth-aachen.de/

o ®©, Examples x| +

2

Deep Learning

1D Function Fitting
In this example, you can train a neural network to fit an arbitrary function and investigate the
approximation performance during the training iterations.

2 > 3 v/‘
s T3 Reset example Open example

CIFAR-10 Image Classification

CIFAR-10 is a dataset of tiny natural images showing objects of 10 different classes. It is a popular data
set for experimenting with different deep learning techniques. In the provided examples you can train
and apply: a fully connected net, a simple convolutional net and a deep convolutional net.

Open example

—~

Deep learning based Air Shower Reconstruction
Ultra-high energy cosmic rays produce extensive air showers of secondary particles upon entering the
atmosphere. Sampling the footprint of these particles with surface detectors is a widely used detection
technique. In this example you can exploit advanced convolutional techniques to reconstruct the
energy, showeraxis and depth of the shower maximum of cosmic ray induced air showers.

Open example

Deep Generative Models

3 Generative Adversarial Networks (GANs) for MNIST .
In this example, you can generate handwritten digits by training a Deep Convolutional Generative w0
Adversarial Network (DCGAN) to the MNIST data set. 2

§ £
8

35

%
¢ L3

i )
= 0 2%
Reset example Open example o

- 15

5 10

s

2 o 1 4
xm)

Astroparticle Examples
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MNIST Digit Recognition
MNIST is a dataset of 28x28 greyscale images of handwritten digits and a classic task for
benchmarking image classification algorithms. In this example, you can train and apply a simple

convolutional neural network to identify the correct digit.
Air Shower Classification

Ultra-high energy cosmic rays produce extensive air showers, which vary among others with the cosmic
ray mass. For tracking the cosmic rays back to their sources, the reconstruction of the charge is a key
parameter hence it could allow for estimating the galactiv magnetic field deflection for each cosmic ray.
In this example you can train a neural network on a toy data set to reconstruct the mass of the air

shower (classifcation) and the showermaximum (regression).
Open example

Open the CIFAR example

Wasserstein GANs for Physics Simulations
In this example, you can train a improved Wasserstein Generative Adversarial Network (WGAN) to

generate signal patterns of cosmic ray induced air showers.
Reset example Open example




& ®, Examples %x | O3 cifar x | +

:., @& Home

W | &/ home / pfackeldey / cifar <

“ Name < Size < Modified
E __init__.py 0B 06/02/2020, 15:39:36
E cifar10.py 2 kiB 06/02/2020, 15:39:36
E examples.png 340 kiB 24/01/2020, 16:52:09
. README.md 1051 B 24/01/2020, 16:52:09
E test-ensemble.py 3 kiB 10/02/2020, 15:55:38
E train_cnn.py 5 kiB 10/02/2020, 15:55:38
E train_dcnn.py 6 kiB 10/02/2020, 15:55:38
E train_nn.py # Rename & Download 1@ Remove 4 kiB 10/02/2020, 15:55:38

\

Open train_nn.py
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®, Examples x | O cifar x B train_nn.py x  +

M Save % Close K Saveas...

CoO~NOOUVTHWNE

#!/usr/bin/env pygpu

import numpy as np Execution Output
import tensorflow as tf

import cifarl@

import matplotlib.pyplot as plt

from tabulate import tabulate

#

# Fully connected network example for the CIFAR-10 classification task.
# Run this script with 'pygpu %file' in the code editor.

#

# e -

# Load and preprocess CIFAR-10 data
g

# X: images, Y: labels
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar1@.load_data()
print("images, shape = ", x_train.shape)

print("labels, shape = ", y_train.shape)

def normalize(images):
mean = np.mean(images, axis=@)[np.newaxis] # shape = (1, 32, 32, 3)
sigma = np.std(images, axis=0)[np.newaxis] # shape = (1, 32, 32, 3)
images_normalized = (images - mean) / sigma
return images_normalized

B @ /home/pfackeldey/cifar

# normalize each pixel and color-channel separately across all images

# take 2000 images for validation from test data p examples.png
X_train_norm = normalize(x_train) e

x_test_norm = normalize(x_test)[:8000] e/f

x_valid_norm = normalize(x_test)[8000:] /’e

# convert labels ("0"-"9") to one-hot encodings, "@" = (1, @, ... @) and so on lo

y_train_onehot = tf.keras.utils.to_categorical(y_train, 10) ,))o

y_test_onehot = tf.keras.utils.to_categorical(y_test, 10)[:8000] di

y_valid_onehot = tf.keras.utils.to_categorical(y_test, 10)[8000:] ’j,

mndel = +f kerac< mndels Seaunentinl( %//
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CIFAR 10: Exercise

- Model: model = tf . keras.models.Sequential(

[
+ Add Iayers or nodes tf.keras.layers.Flatten(input_shape=(32, 32, 3)),

. . . tf.keras.layers.Dense(256, activation="relu"),
Add reQUIarlzatlon tf.keras.layers.Dropout(0.3),

. Dropout pena|ties tf.keras.layers.Dense(256, activation="relu"),
’ tf.keras.layers.Dense(10, activation="softmax"),

+ Activation functions 1,
name="nn",
)
- Modify satell i

X_train_norm,
y_train_onehot,

- Batch size, epochs

) o : batch_size=32,
Optimizer, learning rate epochs=20,

verbose=2,
validation_data=(x_valid_norm, y_valid_onehot),

)

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning



Results

training training

validation 1.81

validation

0.551

0.50

accuracy
o
N
ok

0.401

0.35+— . , . . ‘ | ‘

0 5 10 15 0 5 10 15
epoch epoch

- Model roughly converged, accuracy ~ 50%

- Large generalization gap

- Fully connected network is prone to overtraining
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Feature Correlation

1.0
truck{15 74 10 8 4 20 10 20 40
ship{65 22 3 8 20 20 3 1 30
0.8
horse{17 2 50 19 56 71 18 72
Truck
frog] 3 4 43 34 69 32 5 3 14 Ship
0.6
< dog{12 4 43 52 4 2 16 13 7 Frog
= o
5 deer{-81—1 70~ 26 2 54 27 9 9 Des,
0.4 Cat
cat{20 4 51 104 57 159 60 15 12 21 Bird
bird{ 49 3 169 28 91 60 49 13 11 15 ﬁiurtfi?n%b”e
. ! 0.2 p .
automobile{ 21 [288] 16 13 9 6 10 4 46 105 0o 2% R
airplane= 12 16 5 16 11 8 6 63 30 Srore
e 2 3 5 3 2 ¥ g 235 W
2 8 % ° 8 ® & g % 3
= £
G-
=
©
prediction

- Confusion matrix shows which classes have correlated features
+ Cat«——dog, truck——automobile etc.
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Convolutional
Neural Networks

- Natural Images
- Convolutional Layers
- Strides, Pooling, Padding

Low-Level| |Mid-Level| |High-Level Trainable
Feature Feature Feature Classifier
1

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
https://arxiv.org/abs/1311.2901
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Natural Images

Automate task for humans, very challenging for machine learning models:
- High dimensional input (up to millions of pixels)

- Many possible classes depending on task
- Multiple variations
+ Viewing angle, light conditions, deformation, object variations, occlusions....

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning



Fully Connected Network

- Input layer: Flatten image to 32 x 32 x 3 = 3072 vector
- Fully connected: every pixel connected with each other
0 Huge number of adaptive parameters per layer

0 No use of translational variance

0 No prior on local correlations
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2D Convolutional Neural Networks
input

filter

32
height

32 /
width —
3 depth

- Consider input volume (width x height x depth), eg. 3 color channels
- Use convolutional filter with smaller width and height but same depth

- Slide several filters over entire volume and calculate linear transformation to get
one output value for each position
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: . RWTHAACHEN
Convolutional Operation UNIVERSITY

3-—14+0-241-0+4-04+2-3
+0-0+2-04+4-2+—3-—5 =26
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2D Convolutional Neural Networks

- Filter scans input for the presence of one specific feature

Edge | -1 | -1 | 1 Horizontal =1"=1 | -1 Diagonal | =1 =1
1|8 -1 edgel 5 1 2 | 2 edgel 412
11| -1 1 -1 -1 211

- Convolutional network learns task related filters itself
- Use multiple filters and stack the resulting feature maps depth-wise

input filters
32 | ‘ ﬁ

height
32 /
width

3 depth feature maps
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2D Convolutional Operation

Stack multiple convolutional layers + activations
- Each convolution acts on feature map of previous layer

- Increasing feature hierarchy =
- Increasing of receptive field ©
2
()
O
o
Conv. Conv. g receptive field
+ RelLU + RelLU 2
5x5x3x8 5x5x8x16 o
3 depth 8 depth 16

depth

Fackeldey | HAP Workshop 2020 | Introduction Deep Learning



RWTHAACHEN
UNIVERSITY

Feature Hierarchy

Low-Level| |Mid-Level| |High-Level] | Trainable
Feature Feature Feature Classifier

A
A
A

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
https://arxiv.org/abs/1311.2901
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Spatial Output Size DNNERSITY

Standard convolution reduces the output size due to extent of the filter
» Sets upper bound to the number of convolutional layers

- Example: Convolution with 3 x 3 filter

7
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Padding

Add zeros around image borders to conserve the spatial extent of the input
» Prevents fast shrinking of the input data (image)

- Example: Convolution with 3 x 3 filter and padding

7 Paul-Louis Prove,
Towards Data Science
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Striding

Using a larger stride when sliding over the input, reduces the output size
» Useful for switching to smaller image sizes / larger scales

- Example: Convolution with 3 x 3 filter and stride of 2

T e

Paul-Louis Prove,
Towards Data Science

o4 Fackeldey | HAP Workshop 2020 | Introduction Deep Learning



e RWTH/ACHEN
Dilating UNIVERSITY

Dilation leaves holes in where the filter is applied (also called atrous convolution)

- Useful for aggressively merging spatial information in large images
- Allows for a large field of view

- Example: Convolution with 3 x 3 filter and dilation 1

Hoo@

Paul-Louis Prove,
Towards Data Science
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Pooling

Sub-sample the input to reduce the output size
» Used to merge semantically similar features

Average pooling: Take the mean of each patch
Max pooling: Take the maximum of each patch
Global pooling: Take maximum/average over complete image

max pooling
- Example: el
Pooling using 2 x 2 patches

and a stride of 2

average pooling

—
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Convolutional Pyramid

ConvNet architectures usually have a pyramidal shape. For deeper layers:
- Increasing of feature space

- Decreasing of spatial extent

ad

Conv. Conv.

» Spatial information is converted to representational features with increasing
hierarchy
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Summary

- 2D Convolution acts on 3D input (width x height x depth)
- Slide small filter over input and make linear transformation (dot product + bias)

- Hyperparameter:
+ Size of filter, typically (1 x 1), (3x3), (5x5)or (7 x7)
+ Number of filters (feature maps)
+ Padding (maintain spatial extent) Center olement ofth kel i placed overthe (0 % ¢

source pixel. The source pixel is then replaced (0x0)
with a weighted sum of itself and nearby pixels.

+ Striding or pooling (reduce spatial extent) | 0x1)

+ Dilation to merge information over larger scales o
- Reduction of parameters using symmetry in data:

* Prior on local correlations (use small filters)

* Translational invariance (weight sharing) AN ol

(emboss)

New pixel value (destination pixel)
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Convolutional Layers - Keras

- Same Syntax as for fully connected layers
layers.Convolution2D(32, kernel_size=(5, 5), padding='same', activation='relu', strides=(2, 2
- Layer with 32 filters
- Size of filter 5x5 pixels
- Stride of 2 in both directions
- Use padding = ‘'same’ to keep spatial dimension (else padding = ‘valid’ )
- And RelLu activation
layers.MaxPooling2D((2,2), strides=(2, 2 layers.AveragePooling2D((2.2), strides=(2, 2
- Pooling layer with pooling size of 2x2 pixels and a stride of 2 in both dimensions
layers.Flatten
- Layer flattens output to vector — allows use of Dense layers after Convolutions
layers.GlobalMaxPooling2D layers.GlobalAveragePooling2D
- Pooling operation on complete feature map — (remove all spatial dimensions)
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& ®, Examples %x | O3 cifar x | +

@ Home
=
W | &/ home / pfackeldey / cifar <
“ Name < Size < Modified
E __init__.py 0B 06/02/2020, 15:39:36
E cifar10.py 2 kiB 06/02/2020, 15:39:36
E examples.png 340 kiB 24/01/2020, 16:52:09
. README.md 1051 B 24/01/2020, 16:52:09
E test-ensemble.py 3 kiB 10/02/2020, 15:55:38
E train_cnn.py 5 5 kiB 10/02/2020, 15:55:38
<+ Open train_cnn.py
E train_dcnn.py 6 kiB 10/02/2020, 15:55:38
E train_nn.py # Rename & Download 1 Remove 4 kiB 10/02/2020, 15:55:38

=
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CIFAR 10 — CNN: Exercise

Model — add: model = models.Sequential
- Conv. Iayers and filters tf.keras.layers.Convolution2D(32, kernel_size=(5, 5), strides=(2, 2),
activation="relu", input_shape=(32, 32, 3)),
. Poo|ing’ Dense (FC) Iayers tf.keras.layers.Dropout(0.3),

_ _ tf keras.layers.Convolution2D(64, kernel_size=(5, 5), strides=(2, 2),
- Regularization (after Flatten) activation="relu"),
tf.keras.layers.Dropout(0.3),
tf.keras.layers.Convolution2D (128, kernel_size=(5, 5), strides=(2,
2), activation="relu"),

Model — mOdIfy' tf.keras.layers.Dropout(0.3),
- Batch size, epochs tf. keras.layers.Flatten(),
] ] tf.keras.layers.Dense(128, activation="relu"),
- Kernel Slze, strides tf.keras.layers.Dropout(0.3),

tf. keras.layers.Dense(10, activation="softmax"),

- Optimizer, learning rate
o Can you achieve >75% validation accuracy?
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CIFAR 10 — Deep Convolutional Network

62

model = models.Sequential
layers.Convolution2D(16, kernel_size=(3, 3), padding='same', activation="elu',
mput_shape=(32, 32, 3)),

layers.Convolution2D (32, kernel_size=(3, 3), padding='same', activation='elu'),

layers.MaxPooling2D((2,2)),

layers.Convolution2D (32, kernel_size=(3, 3), padding='same', activation='elu'),

layers.Convolution2D (64, kernel_size=(3, 3), padding='same', activation='elu'),

layers.MaxPooling2D((2,2)),

layers.Convolution2D (64, kernel_size=(3, 3), padding='same', activation='elu'),

layers.Convolution2D (128, kernel_size=(3, 3), padding='same', activation='elu'),

layers.MaxPooling2D((2,2)),

layers.Convolution2D (128, kernel_size=(3, 3), padding='same', activation='elu'),

layers.Convolution2D (256, kernel_size=(3, 3), padding='same', activation='elu'),

layers.GlobalMaxPooling2D(),

layers.Dropout(0.5),

layers.Dense(128, kernel_regularizer=keras.regularizers.11_12(11=0.025, 12=0.025),
activation='elu'),

layers.Dropout(0.5),

layers.Dense(10, activation='softmax'
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‘ com2d_1_input: InputLayer

‘ conv2d_1: Conv2D

output: | (None, 32, 32, 16)

(None, 32, 32, 16)
output: | (None, 32, 32, 32)

ut: | (None, 32,32, 32)
utput: | (None, 16, 16, 32)

input: [ (None, 16, 16, 32)

output: | (None, 16, 16, 32)

input: [ (None, 16, 16, 32)

output: | (None, 16, 16, 64)

ut. | (None, 16, 16, 64)

one, 4, 4, 256)

P oL - \ nput: J (None, 4, 4, 256) |
global_max_pooling2d_1 D [ | G755

(None, 256)

(None, 128)

=
dense_2: Dense.




Results

airplane

18

automobile -
bird 4 37
cat 4 19
- deer 4 13
=
-
= dog 1 11
frog{ 2
horse 4 16
ship4{34 5
truckq 11 16 2 3 0 0 0 1 9
T T T T T T T T T
[} w kel b~ T o o [} o
§ 3 5 S g 8 & £ §
s 2 2
= £
s 8
=
©
prediction

13

29

11

truck

1.0

0.8

0.6

ro0.4

- 0.2

- 0.0

accuracy

0.8

°
~
|

o
)
L

0.5 A1

0.4 1

—— training
—— validation
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Automobile
Airplane

0.0 0.2 0.4 0.6 0.8
Score
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Links & Resources

* Erdmann, Glombitza, Klemradt: Deep Learning in Physics Research, Summer Term Lecture Series RWTH

* TensorFlow Playground: https://playground.tensorflow.org
* Deep Learning (Goodfellow, Bengio, Courville), MIT Press, ISBN: 0262035618
* http://www.deeplearningbook.org/

* Neural Networks and Deep Learning (Nielson) - http://neuralnetworksanddeeplearning.com/

* CS231n - Convolutional Neural Networks for Visual Recognition (Kaparthy)
* http://cs231n.stanford.edu/syllabus.html

* Deep Learning by Google (Vanhoucke), Udacity https://www.udacity.com/course/deep-learning--ud730

* An Introduction to different Types of Convolutions in Deep Learning, Paul-Louis Prove
* https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d

* Deep Learning with Python, Francois Chollet
* The CIFAR-10 dataset - https://www.cs.toronto.edu/~kriz/cifar.html

* Deep Learning-based Reconstruction of Cosmic Ray-induced Air Showers - Erdmann, Glombitza, Walz
https://doi.org/10.1016/j.astropartphys.2017.10.006
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Introduction to Deep Learning

Additional Material

o "!I

Martin Erdmann, Peter Fackeldey

(slide credits: Jonas Glombitza) P

RWTH Aachen YT o
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Toptagging in HEP: Motivation

Many BSM searches with t t final
state

Especially interesting in BSM
Higgs physics

=) strong coupling to top quarks
Topology: 2 fatjets in the final state

We need a proper top tagging
algorithm!

Classic approach: use
N-subjettiness and soft drop mass

Our approach: use DNNs and
CNNs
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CMS PAS HIG-17-027

P

EYukawa H— —_

High top
momentum _,

Low top
momentum

Resolved
region Boosted ™

region

Top tagqging at the LHC experiments with proton-proton collisions at Vs = 13TeV


https://www.researchgate.net/publication/280882365_Top_tagging_at_the_LHC_experiments_with_proton-proton_collisions_at_s_13TeV

Toptagging in HEP: Dataset

We have 2 classes: top jets and QCD jets (100000 jets per class)
Each jet has 200 constituents (padded with zeros)

Generated with pythia8, \s = 14 TeV, no pileup

Fatjets are reconstructed with anti-kt algorithm (delta R = 0.8)

In each generated event only the leading jet is considered with:
550 < p,; <650 GeV and |n| <2

We prepared the dataset in 2 formats (numpy arrays):
eta, phi & four vector (E, px, py, pz) for each constituent in each jet,
Shape=(njets, 200, 6, 1)

Fatjet energy deposition as 2d-image in eta-phi plane with 40x40 pixel
(already normalized to unity),
Sshape=(njets, 40, 40, 1)

Link to dataset

67
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https://desycloud.desy.de/index.php/s/llbX3zpLhazgPJ6

Toptagging in HEP: Exercise

< ®, Examples

L

Deep Learning

x  +

1D Function Fitting
In this example, you can train a neural network to fit an arbitrary
function and investigate the approximation performance during the

training iterations.
Reset example Open example

CIFAR-10 Image Classification

CIFAR-10 is a dataset of tiny natural images showing objects of 10
different classes. It is a popular data set for experimenting with
different deep learning techniques. In the provided examples you
can train and apply: a fully connected net, a simple convolutional
net and a deep convolutional net.

Reset example Open example

Deep learning based Air Shower Reconstruction
Ultra-high energy cosmic rays produce extensive air showers of
secondary particles upon entering the atmosphere. Sampling the
footprint of these particles with surface detectors is a widely used
detection technique. In this example you can exploit advanced
convolutional techniques to reconstruct the energy and showeraxis
of cosmic ray induced air showers.

Reset example Open example

[T

showermaximum (regression).

50 5

MNIST Digit Recognition

MNIST is a dataset of 28x28 greyscale images of handwritten
digits and a classic task for benchmarking image classification
algorithms. In this example, you can train and apply a simple
convolutional neural network to identify the correct digit.

Reset example Open example

Air Shower Classification

Ultra-high energy cosmic rays produce extensive air showers,
which vary among others with the cosmic ray mass. For tracking
the cosmic rays back to their sources, the reconstruction of the
charge is a key parameter hence it could allow for estimating the
galactiv magnetic field deflection for each cosmic ray. In this
example you can train a neural network on a toy data set to
reconstruct the mass of the air shower (classification) and the

Open example

Toptagging using Deep Neural Networks

Top quarks are of special interest in high-energy physics due to
their strong coupling to the Higgs boson. Additionally, they
participate in many signal processes in LHC physics with strongly
boosted event topologies. This examples allows you to
discriminate top jets from qgcd jets with a CNN and a DNN

architecture. You can choose betweem two dataset: images of the jet constituents, and their four

momenta.
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Reset example Open example




Toptagging in HEP: Exercise

Two files: Model — add:
- jet_4vectors.py - Conv. layers and filters
- jet_cnn.py - Pooling, Dense (FC) layers
Open results in dir: - Regularization (after Flatten)
+ [train-4vectors-XXX.X
+ [train-images-XXX.X Model — modify:

- Batch size, epochs
- Kernel size, strides

pﬁiu - Optimizer, learning rate
= pythen '%sfile! v
Execution Output 4 Top ¥ Bottom @ Clear
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Deep Learning in CMS (Software)

Software in CMSSW 11X (https:/github.com/cms-sw/cmsdist):
Many data-science tools: pandas, numpy, scikit-learn, scipy
Comes with tensorflow, theano, keras CMSSW > 94X
Evaluation of tf.graph in CMSSW: https://github.com/riga/CMSSW-DNN
LCG software stacks (latest one “96”): http:/icginfo.cern.ch/

“source /cvmfs/sft.cern.ch/lcg/views/LCG_96/x86_64-centos7-gcc62-opt/setup.sh”
One of the main problems: how to go from ROOT to numpy?
2 libraries:
uproot: https:/github.com/scikit-hep/uproot (does not depend on ROOT!!)
root_numpy: https:/github.com/scikit-hep/root_numpy
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- Deep Convolutional Networks
- Batch Normalization, Shortcuts
- Residual Networks, Inception

o\

\ w
WE NEED TO GO DEEPER
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Obstacles when Going Deeper

[
S

20r

56-layer

20-layer

56-layer

training error (%)
test error (%)

20-layer

o

5 6 GO 1 2

1 2

=)

3 7 3 4 5 6
iter. (le4) iter. (1e4)

- Neural networks should get monotonously better when adding more layers
- Problems

+ Convolutional filter show redundant behavior
Bad initialization

*

*

Internal covariate shift — need to constantly adapt changes in the earlier layer
Vanishing gradients — gradients become too small

Shattered gradients — gradients become white noise
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RWTHAACHEN

Inception Module UNIVERSITY
Key observation: Convolutional filters show redundant behavior
Idea: Factorize convolution operation | s
- Use different small convolutions in
parallel and concatenate outputs S comoltions | | 6 comoksions | | 1x1 convolutons
- Massive use of (1 x 1) convolutions i o oD s

* Increase model complexity
1 Make model sensitive to different scales
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Xception (“Extreme Inception™)

- Idea: If spatial correlations and cross-channel correlations are sufficiently
decoupled it's better to compute them separately

- Depthwise separable convolutions
+ Perform depthwise separate convolution on each channel

+ Perform pointwise convolution (1 x 1) across channels
1x
1x

. i 1,
3 64

64

Separate convolution per channel
64 no bias, no activation 64 64
64(3-3-1)4+64(1-1-64+1) ~ 4,700

Standard convolution: 64(3-3-64 + 1) = 37,000
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Residual Unit

’ X l s X
weight layer weight layer
}_(X) ) lrelu f(x) < lrelu «
weight layer weight layer identity
L v relu
relu

H(x) = F(x) + x

- Weight block learns small residual F(x) on top of input X
- Output of residual unit H(x) = F(x) +x

- Shortcut let gradient propagate easily to earlier layers

- Later layers can easily turn weights to zero by F(x) =0
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image

34-layer residua

image

3x3 conv, 64

oy

3x3 v, 64

<§4§+

3x3 conv, 128, /2

3x3 c 128

[
[
[
[ 3x3 conv, 64
[
I
I
I

€S [

| 3x3 conv, 128

oy

| 3x3cony, 128

-«

Up to several of
hundreds layer deep!



CHEN
Vanishing Gradient Problem UNIVERSITY
o

w2

w3

y=o(xs) =o(ws-o(xs) + bs) = o(ws - o(wy - o(x3) + by) + bs)....

Oy _ Oo(zs) Oz Oo(xg) Ony
8w1_ 81135 80'(334) 8334 8’&)1

~ tanh

— a’(x5)w5 g 0’(&74)’!04.... . 0"(5171)’(01

« Stacking many layers can lead to vanishing gradients
+ Activation saturates

- Updates in early layers become very tiny

P - No learning

1 0 1 - Don't use sigmoids / tanh only rarely — use shortcuts

=D
lo’(z)] << 1
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Batch Normalization

- Calculate batch-wise for each channel:
+ Mean: UB
_ 2
+ Variance: 0B

- Add free parameters 7 B to change scale and mean

H, W

[ S S

L — HUB
OB

0 y =

v+ B

N
N
Y
™
N
~

- Makes DNN robust against poor initializations
- Helps with vanishing gradient / less sensitive to high learning rates

- Has regularizing effect (no large weights, noise because of batch dependency)
- Reduce internal covariate shift

= Very successful for convolutional architectures
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Self Normalizing Networks

- Batch normalization adds perturbations for

training fully connected networks
- Use activation function which ensures standard :
normalized output: # =0, 0 =1 :
- Stabilize the training
- Needs LeCun initialization & Alpha-dropout ;

= Allow for very deep networks! A . : : 4
i ifzx >0
1 = A
selule) {o:em —a ifz<0

Requirements:
. negative & positive values to control the mean

. Slope < 1 for damping the variance
. Slope > 1 to rise the variance
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Normalization

Networks learn best when data is normalized
> Normalize data in between the layers

v Prevent very large activations (regularization) and very small gradients
v Minimize covariate shift (perturbation due to simultaneous layer update)
v Weights on same scale in each layer— help against bad initializations

- Convolutional approach — Batchnormalization
+ Normalize feature activations over a batch if images

- Fully Connected approach — Selu

+ Use activation function which ensures
standard normalized output —
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®, Examples x | (3 CIFAR x +

# Home

R | & home KoenigAlfonsDerViertelVorElfte ~ CIFAR

~
=

< Name + Size ~ Modified
E cifar10.py 3kiB  4/27/2018, 11:50:38 AM
E train-DCNN.py 6kiB  5/8/2017, 11:47:01 AM
E train-NN.py # Rename & Download @ Remove 4 kB 5/8/2017, 11:47:00 AM
E train-CNN.py \ . 5kiB  5/8/2017, 11:46:59 AM
E test-ensemble.py O pe n tral n -C N N = py 3kiB 2/20/2017, 12:26:27 AM
' README 686 B  2/17/2017, 3:02:01 PM
P examples.png 340 kiB 2/17/2017, 3:02:01 PM

Design your own network - using ResNet or Inceptions and
add BatchNormalization!
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Code Examples — Advanced API

Inception Module Residual Module
from tensorflow import keras from tensorflow import keras
layers = keras.layers layers = keras.layers
def inception_unit(x0): def residual unit(x0):
x1 = layers.Conv2D(16, (1, 1), padding='same', activation="relu')(x0 x = layers.Conv2D(64, (1, 1), padding="same")(x0

x1 = layers.Conv2D(16, (3, 3), padding='same', activation="relu')(x1
x = layers.Activation("relu")(x
x2 = layers.Conv2D(16, (1, 1), padding='same', activation="relu')(x0 x = layers.Conv2D (64, (3, 3), padding="same")(x
x2 = layers.Conv2D(16, (5, 5), padding='same', activation="relu')(x2
return layers.add(|x, x0
x3 = layers.Conv2D(16, (1, 1), padding='same', activation="relu')(x0

x4 = layers.MaxPooling2D((3, 3), strides=(1, 1), padding='same')(x0 X = ... # some tensor of shape say (n, nx, ny, 64)
x4 = layers.Conv2D(64, (1, 1), padding='same', activation="relu')(x4 X = residual_unit(x
return layers.concatenate(|x1, x2, x3, x4/, axis=-1 X = residual_unit(x

X = ... # some tensor of shape say (n, nx, ny, 64)

X = Inception_unit(x
X = Inception_unit(x
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