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Nothing is ever new

Machine learning and top tagging

— 1991: NN-based quark-gluon tagger (Lénnblad, Peterson, Régnvaldsson]
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A neural network method for identifying the ancestor of a hadron jet is presented. The idea
is to find an efficient mapping between certain observed hadronic kinematical variables and the
quark-gluon identity. This is done with a neuronic expansion in terms of a network of sigmoidal
functions using a gradient descent procedure, where the errors are hack-propagated through the
network. With this method we are able to separate gluon from quark jets originating from Monte
Carlo generated e*e” events with ~ 85% approach. The result is independent of the MC
model used. This approach for isolating the gluon jet is then used to siudy the so-called string
effect.

— but unclear how to define quarks vs gluons
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— but unclear how to define quarks vs gluons
— top jets from t — bqq’ vs QCD jets
motivation:  Z’ — tt with pr ¢ > 300 GeV
theory: top decays perturbative QCD
experiment: labelled semileptonic tf events
simulation:  fast and high-quality MC data
= Fat top jets perfect ML playground %200 wo P?[(g)e\/]




Jet image machines

Next step in LHC analyses [Cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/15)]

why intermediate high-level variables?
as much data as possible

calorimeter output as image
eventually, adding tracker output

= Deep learning = modern networks on low-level observables
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Jet image machines

Next step in LHC analyses [Cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/15)]

why intermediate high-level variables?
as much data as possible

calorimeter output as image
eventually, adding tracker output

= Deep learning = modern networks on low-level observables

Convolutional network [kasieczka, TP, Russell, Schell; Macaluso, Shih]
— image recognition standard ML task
— rapidity vs azimuthal angle, colored by energy deposition
— 40 x 40 bins through calorimeter resolution
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Theory work?

4-vector input — graph CNN [Butter, Kasieczka, TP, Russell; much better versions by now]
— physics objects from calorimeter and tracker
— distance measure known from e&m [alternatively: Erdmann, Rath, Rieger]
Inspired by QFT

— input 4-vectors (K, ;)
— jet algorithm — combination layer

Cola 7
Kui = Kuj = Kui Cj 10° low py calo
— observables —; Lorentz layer ~— lowp, PF
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Jet classification done
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Jet classification with error bars

Jet-by-jet uncertainties
— (60£77)% top, uncertainty from training
— probability for test event p(c*|C)  (classifier output ¢, network ]
p(e’1C) = [ d plc” 0, C) p(w]C) = [ dw p(e’ w, C) q(e)
— loss function from minimizing Kullbeck-Leibler divergence  (gayes' theorem]

KL[g(w), p(w|C)] = / de q(w) log pz(ng)
_9@)p(C)
P(Clw)p(w)

~ KLIq(w). p(w)] +10g p(C) [ dw a(w) ~ [ dw a(w) I0g p(Clw)
N————

L2-regularization

~ [ dw a(w) og

normalization of g, irrelevant likelihood, maximized

= L = KLg(w), p(w)] — / de q(w) log p(Clew)




Jet classification with error bars

Jet-by-jet uncertainties
— (60+77)% top, uncertainty from training
— probability for test event p(c*|C)  (classifier output C, network w]
p(e’1C) = [ o plc”l,C) p(w]C) = [ dw p(e . C) q(w)
— loss function from minimizing Kullbeck-Leibler divergence  (gayes' theorem]

KLIg(e),p(wIO)] = [ de g(e) log p;*gg)
4(w)p(C)
P(Cl)p(w)

~ KLIq(w). p(w)] +10g (C) [ dw a(w) ~ [ d a(w) 10g p(Cle)
—_———

L2-regularization

= /dw g(w) log

normalization of g, irrelevant likelihood, maximized

= L= KLg(w), p()] — [ dw g(e) log p(Cle)

Ensemble of networks
g SR
\ . Opred

= sample w to extract (ppred; Tpred)
check prior independence
check frequentist many-networks ':




Jet classification with error bars

Jet-by-jet uncertainties

— (60+77)% top, uncertainty from training
- probability for test event p( c* ‘ C) [classifier output C, network w]

p(e’1C) = [ o plc”l,C) p(w]C) = [ dw p(e . C) q(w)

= sample w to extract (upred; Tpred) 08
g=0.5
Complication with classification o6 ncons
2 Opred
— sigmoid to map on closed interval [0, 1] Bo4
E =10
Sigmoid(x) = Tro 02 o1 yfanconsto
L. 0=3.0
— predictive mean 0.0
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oo N Network output
Hpred = / dw Sigmoid(w) Gu,o(w)
. :
X X
= dx ——— G log—— ) €[0,1
o s G (00 725) 0.1 g,
5
— predictive standard deviation ‘Zgz Opred  flprea
1 i
Tpred = [pred (1 - Hpred) U;l:ggons g 1
= Additional complication... 0
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Statistics & systematics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

— Bayesian version of DeepTop and LoLa 105
— similar performance as deterministic network \ o
training time somewhat increased 10 —— Blola
— LloLa
o 10°
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Statistics & systematics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

— Bayesian version of DeepTop and LoLa

— similar performance as deterministic network
training time somewhat increased

— correlation between piyreq and opred  ftoy network, 10kjets]
- increasing training statistics [parabola from closed interval output]

l predictive mean~[0.45, 0.55]
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Statistics & systematics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

— Bayesian version of DeepTop and LoLa

— similar performance as deterministic network
training time somewhat increased

— correlation between piyreq and opred  ftoy network, 10kjets]
- increasing training statistics [parabola from closed interval output]

Noise/pile-up

- increasing pile—up, stable [LoLa, ordered constituents]
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Statistics & systematics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

— Bayesian version of DeepTop and LoLa

— similar performance as deterministic network
training time somewhat increased

— correlation between piyreq and opred  ftoy network, 10kjets]
- increasing training statistics [parabola from closed interval output]

Noise/pile-up

- increasing pile—up, stable [LoLa, ordered constituents]
- increasing pile-up, unstable [DeepTop, jet image]
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Statistics & systematics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

— Bayesian version of DeepTop and LoLa

— similar performance as deterministic network
training time somewhat increased

— correlation between piyreq and opred  ftoy network, 10kjets]
- increasing training statistics [parabola from closed interval output]

Jet energy scale

— systematics effect in test sample
1— shift of hardest constituent
— adversarial example: hierarchical subjets = top

}  Top event
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Statistics & systematics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

— Bayesian version of DeepTop and LoLa

— similar performance as deterministic network
training time somewhat increased

— correlation between piyreq and opred  ftoy network, 10kjets]
- increasing training statistics [parabola from closed interval output]

Jet energy scale

— systematics effect in test sample
1— shift of hardest constituent

— adversarial example: hierarchical subjets = top
2— uncorrelated shift of all constituents

— tiny degradation for signal
= Better control needed

Normalized
[y = N N
o w o w

o
n

Top jets

0jes=0.2
mean = 0.0110(6)

mean = 0.0459(4)
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Jet measurements with error bars

Regression: measure pr ;  [Kasieczka, Luchmann, TP (soon)]

— effect of noisy and size-limited data separated
Opred- limited training sample
onoise: Statistical behavior of training data  (caussian likelihood]
C—ppP A
(ZUT’L) + 5 log 020 -+ CONSE

noise

log p(Clw) — log p(C|p, onoise) =
Gtzot = O.gred + Uﬁoise [all Gaussian]

Ensemble of networks

- Output
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BNN o[ l4
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Jet measurements with error bars

Regression: measure pr ;  [Kasieczka, Luchmann, TP (soon)]

— effect of noisy and size-limited data separated
Opred- limited training sample
onoise: Statistical behavior of training data  (caussian likelihood]

L _(C=w? 2
log p(C|w) — log p(Cllh Unolse) = T + 5 log O oise T CONSst

noise
2 _ 2 2 )
Ttot = Ppred + O oise 12l Gaussian]

- sample size dependence [statistics saturating]

pT=[600, 620] GeV

104 10° 108
Training size



Jet measurements with error bars

Regression: measure pr ;  [Kasieczka, Luchmann, TP (soon)]

— effect of noisy and size-limited data separated
Opred- limited training sample
onoise: Statistical behavior of training data  (caussian likelihood]

L _(C=w? 2
log p(C|w) — log p(Cllh Unolse) = T + 5 log O oise T CONSst

noise
Gtzot = O.gred + Uﬁoise [all Gaussian]
- Sample size dependence [statistics saturating]

) X Jet pT = [600, 620] GeV
— comparison with pr ¢ vs pr ;
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Jet measurements with error bars

Regression: measure pr ;  [Kasieczka, Luchmann, TP (soon)]

— effect of noisy and size-limited data separated

Opred- limited training sample

onoise: Statistical behavior of training data  (caussian likelihood]

log p(Clw) — log p(C|k, onoise) =

Gtzot = Ugred + Uﬁoise [all Gaussian]
- sample size dependence [statistics saturating]
— comparison with pr ¢ vs pr ;
— dependence on ISR and top-ness
= Accurate error estimate

(c—w?

2
2Unoise

0.13
0.12
0.11
0.10
0.09
0.08

VMSE / pr

0.07

0.06

0.05
0.04

]
+ - log o2

2

oise + CONSt

with ISR

=== Ohnoise / PT

without ISR
(25% most top like)

600

700 800
prGev]




Jet calibration

Calibration means error propagation

— training on smeared data??

better: training with smeared labels [p7 measured elsewhere, with error]
— Gaussian noise over pr ; label 2, 4,6...10%]
— distribution of extracted pr ;

correlation extending to error bars

slice with expected non-Gaussian tail from QCD radiation

900 Predicted pT = [600, 620]
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850 [ data
800 0.008 i 68%
s 750 ° i
] ] N
© 700 N 0.006 l: \
5 [ iy
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3 2 0.004 i
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R
550 i \
—— Max +/- 0 (68%) 0.002 A
500 o AR R
---- prediction S i \\\
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Jet calibration

Calibration means error propagation

— training on smeared data??
better: training with smeared labels [p7 measured elsewhere, with error]
— Gaussian noise over pr ; label 2, 4,6...10%]
distribution of extracted pr ;
correlation extending to error bars
slice with expected non-Gaussian tail from QCD radiation
effect from calibration uncertainty alone
trace label smearing to network output
making sense of ongise

= Works!
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Looking into the future

Machine learning a great tool box...

...LHC physics really is big data

...imagine recognition is a starting point

...performance in tagging solved

..time for (more) interesting questions

...Bayesian networks do uncertainties better than current methods
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