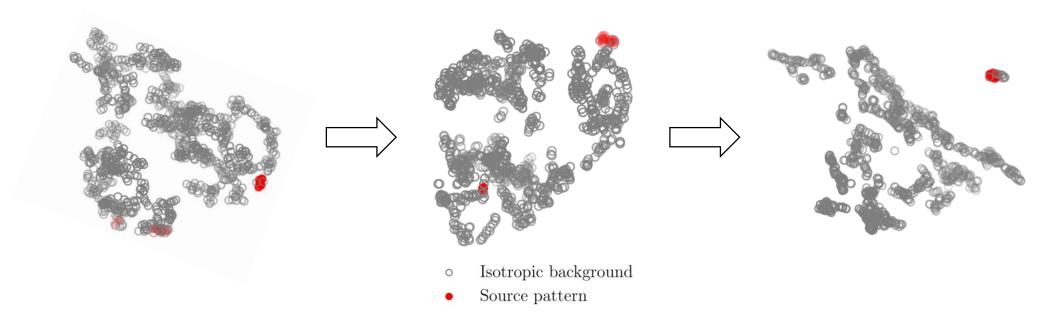
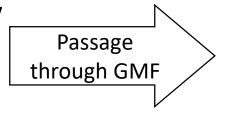
Identification of Patterns in Cosmic-Ray Arrival Directions using **Dynamic Graph Convolutional Neural Networks**

Teresa Bister, Martin Erdmann, Jonas Glombitza **Niklas Langner**, Josina Schulte, Marcus Wirtz

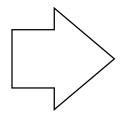


Motivation

Ultra-high energy cosmic rays from source

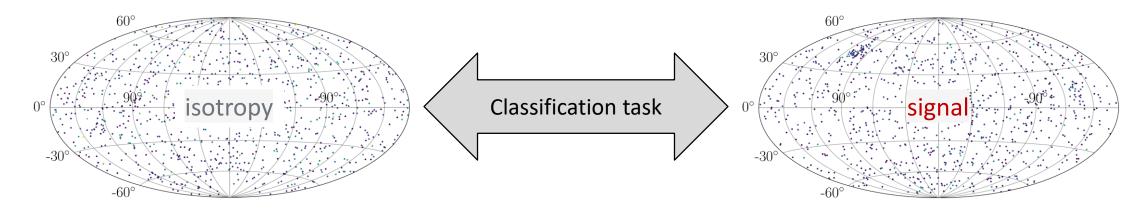


Energy- and charge-dependent deflection



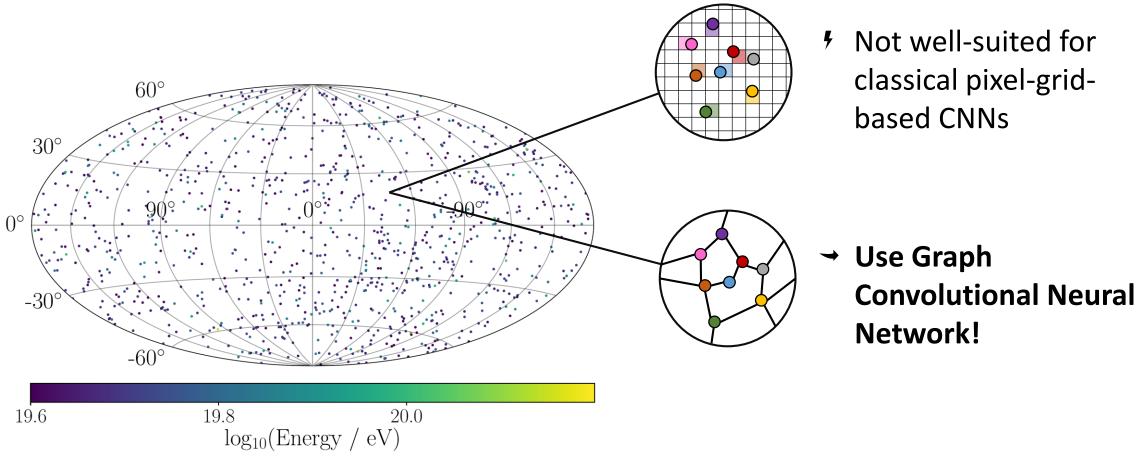
Pattern in arrival directions

- → Identify patterns to identify sources
- → Pattern recognition task
- → Use convolutional neural networks



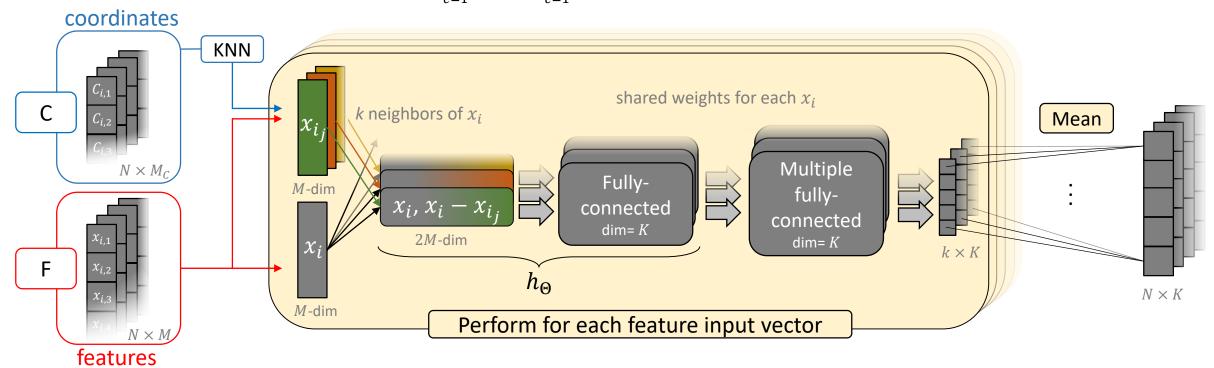
Approach

Graph Convolutional Neural Network



EdgeConv¹ Layer

$$h_{\Theta}^{a}\left(x_{i,c}, x_{i_{j},c}\right) = \sum_{c=1}^{M} \theta_{c}^{a} x_{i,c} + \sum_{c=1}^{M} \theta_{c}^{\prime a} (x_{i_{j},c} - x_{i,c})$$
 $a = 1 \dots K \text{ (number of filters)}$

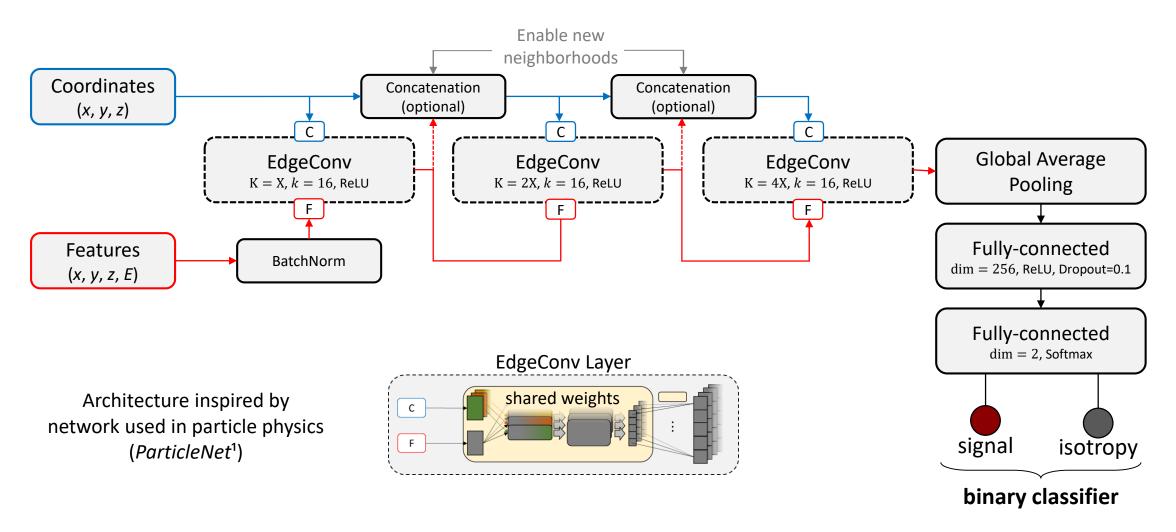


- Weight sharing for each pair of cosmic rays
- **Mean** over neighbors *j*

permutation invariance

¹ https://arxiv.org/abs/1801.07829

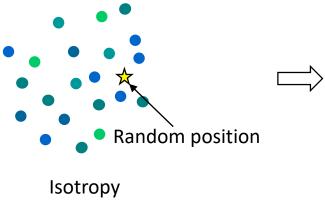
Network Architecture

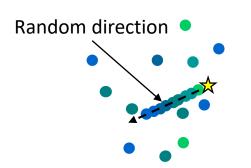


¹ https://arxiv.org/abs/1902.08570

Simulation of a Single Source

Simplified scenario: one source pattern of $N_{\rm S}$ cosmic rays + isotropic background





Coherent deflection Rotation in random direction with rotation angles

$$\delta_{\rm coh}(R=E/Z) = \frac{D}{R/EV}$$
rad

Turbulent deflection: Scattering according to Fisher distribution of width

$$\sigma_{\text{turb}}(R = E/Z) = \frac{T}{R/EV} \text{rad}$$

Training

EdgeConv dims

- 1000 cosmic rays with E > 40 EeV, spectrum similar to measurements of Pierre Auger Observatory
- Simulate on the fly during training \rightarrow no overfitting

Loss

50

25

Train on **strong multiplets** and let the network generalize

Composition	Turb. deflection T	Coherent deflection D	Source CRs
Pure Helium	50% of JF12 maximum in train	Typical values from JF12	55
	values from JF12 in validation	but larger than turbulent	

125

150

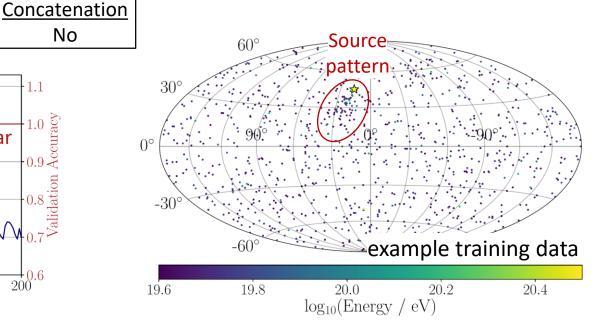
100

Training Step

Optimizer

16/32/64 Categorical cross entropy Adam No 100% accuracy as Validation Loss $N_{\rm S}=55$ is very clear 10^{-}

75



 10^{-5}

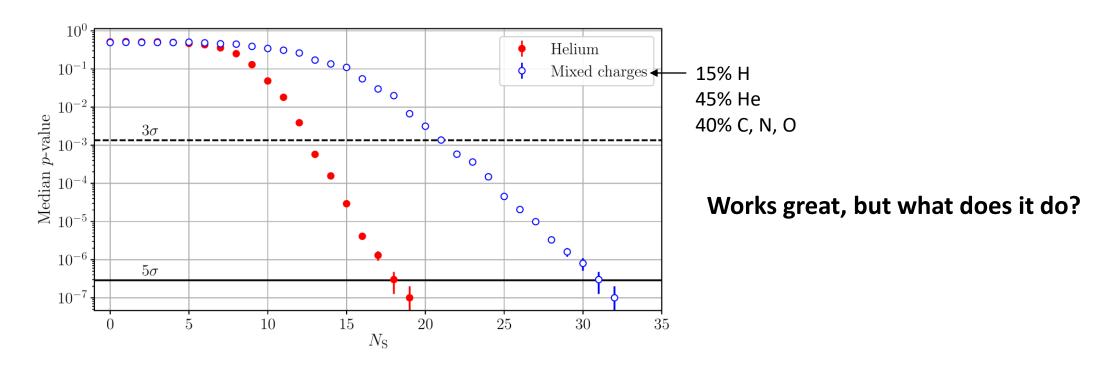
175

Sensitivity

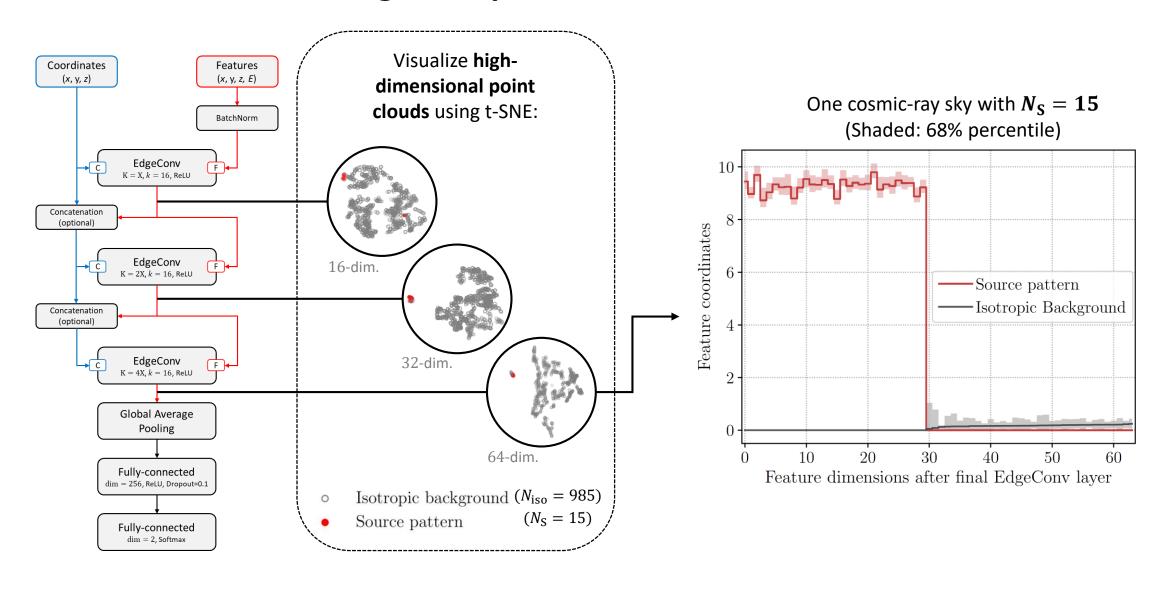
Analyze cosmic-ray skies simulated using position-dependent deflection strengths from JF12

- Determine the 'signal'-output of
 - 10^3 cosmic-ray skies for **varying** N_S (x_{sig})

- 10⁷ **isotropic** cosmic-ray skies
- Calculate the relative amount of 'signal'-outputs from isotropy $\geq x_{\rm sig}$

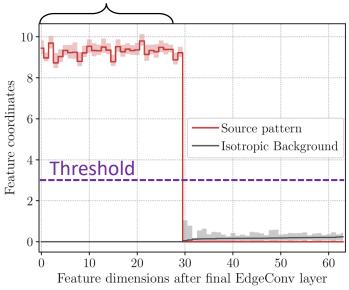


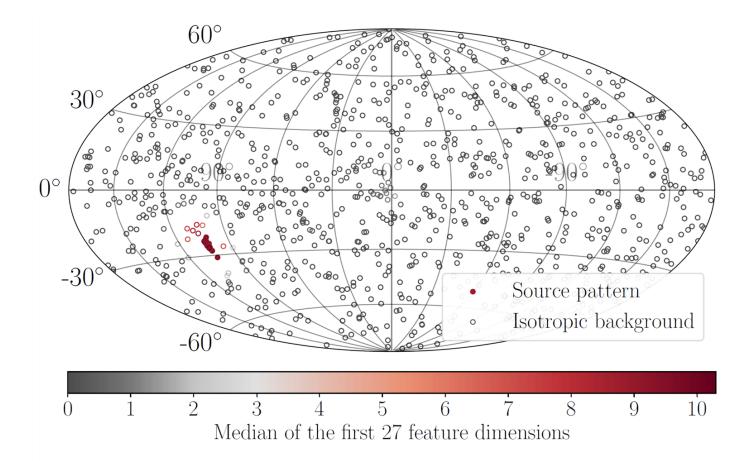
The Network's Working Principle



Individual Classification of Cosmic Rays

Take **median** of first 27 dimensions and classify via threshold of 3

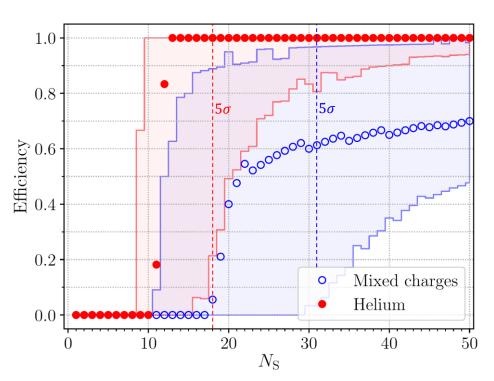




Individual Classification of Cosmic Rays

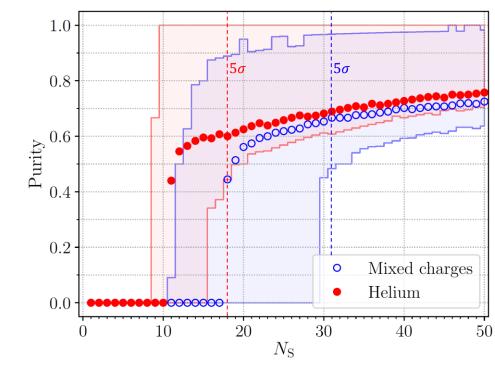
Efficiency:

$$\epsilon = \frac{\text{\# correctly identified signal cosmic rays}}{\text{\# signal cosmic rays}}$$



Purity:

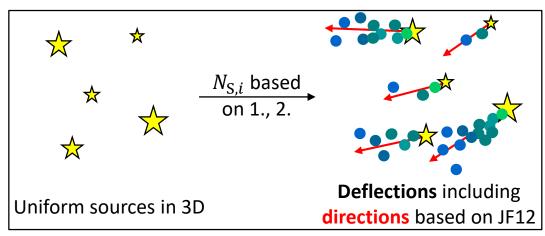
$$\rho = \frac{\text{\# correctly identified signal cosmic rays}}{\text{\# identified signal cosmic rays}}$$



(of 1000 cosmic rays)

Multiple Sources: Simulation & Training

- Realistic 3D universe: uniformly distributed and identical sources, accounting for:
 - 1. **Geometrical effect** on fluxes: $f_i \propto d_i^{-2}$
 - 2. **Interactions**, e.g. with photon fields
- Use parameters from Auger Combined Fit¹
- Only free parameter: source density $\rho_{\rm S}$
- Apply deflection based on JF12



¹ https://arxiv.org/abs/1612.07155

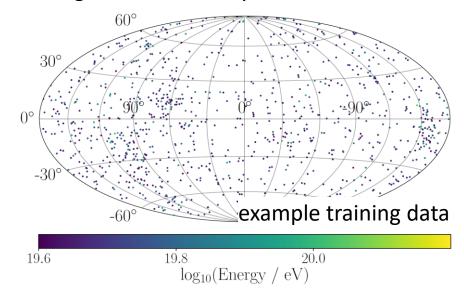
Adjust network to new simulation:

EdgeConv-dimensions: 64/128/256

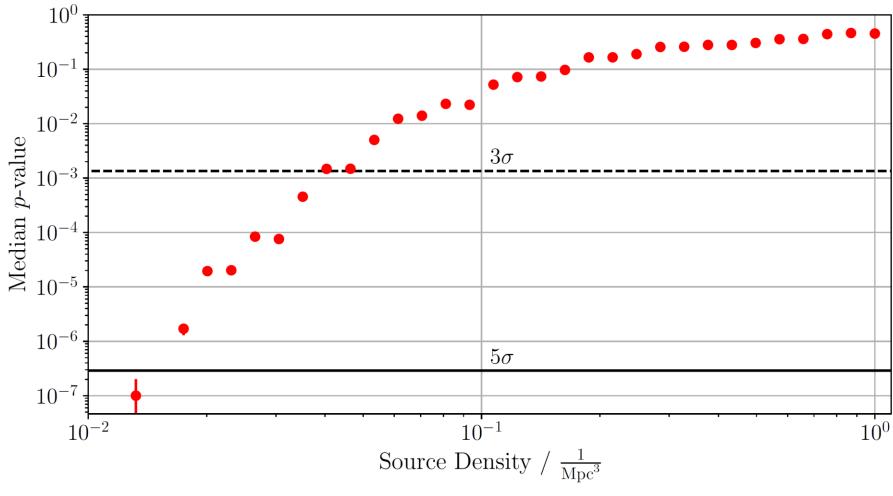
Concatenation: Yes

• Train on $ho_{
m S}=10^{-3}/{
m Mpc^3}$

 Deflection strengths and directions maps from JF12 randomly rotated and used for all cosmic rays to achieve global consistency



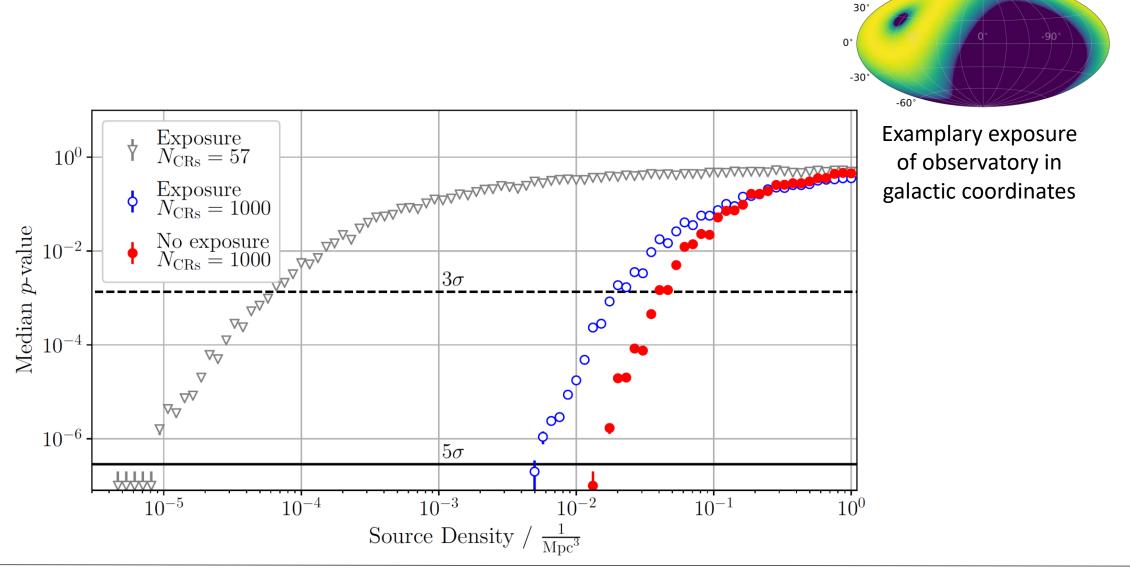
Sensitivity



Single Source

 5σ at $\rho_{\rm S} \approx 1.5 \cdot 10^{-2}/{\rm Mpc^3}$

Sensitivity: Effect of Limited Sky Coverage



Source density limit from AGASA data

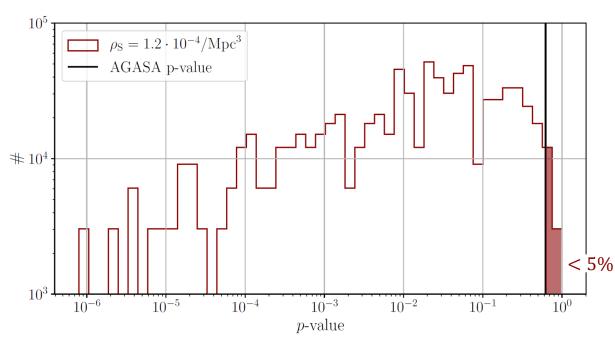
Single Source

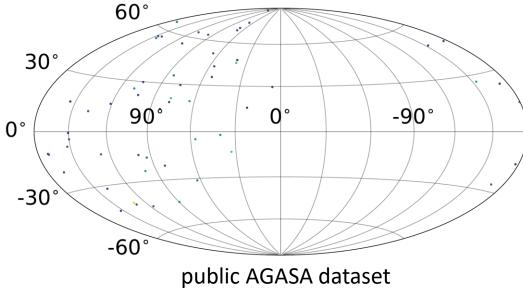
Akeno Giant Air Shower Array (AGASA): cosmic ray observatory, in operation from 1990 to 2007

Calculate **p-value** using equatorial scrambling as isotropy

$$→$$
 p = 0.63

Take **p-value distribution** for varying $\rho_{\rm S}$ and determine the **probability of p** \geq **0**. **63**

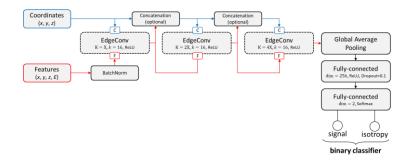


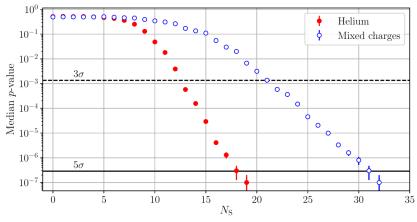


At
$$\rho_S^{95} = 1.2 \cdot 10^{-4} / \mathrm{Mpc^3}$$
: p ≥ 0.63 for 5% \rightarrow Lower limit of ρ_S at 95% confidence

Conclusion

- (Dynamic) GCNN well-suited for sparse cosmic-ray data, efficiently using all available information
- Network automatically performs clustering
- High sensitivity for a single pattern of one strong source $(5\sigma \text{ at } f_{\rm Sig} = 1.8\%)$
 - → Possibility to identify **individual source cosmic rays**
- Identify the global structure of simulated universe
 - → Constrain source density ($\rho_{\rm S} \ge 1.2 \cdot 10^{-4}/{\rm Mpc^3}$ from AGASA data)
- → **Great potential** for data from current observatories $(N_{CRs} \sim 1000)$





Backup

Dynamic Graph Convolutional Neural Network

Single Source

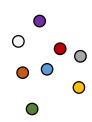
Input: Point Cloud of *N* points

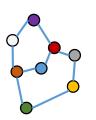
of dimension M

Our task: 4D points

(x, y, z, E)

Build graph by connecting points x_i to k nearest neighbors x_{i_i}





Perform 'EdgeConv' 1 operation $a = 1 \dots K$ (number of filters)

$$h_{\Theta}^{a}\left(x_{i,c}, x_{i_{j},c}\right) = \sum_{c=1}^{M} \theta_{c}^{a} x_{i,c} + \sum_{c=1}^{M} \theta_{c}^{\prime a} (x_{i_{j},c} - x_{i,c})$$

Additional fullyconnected layers

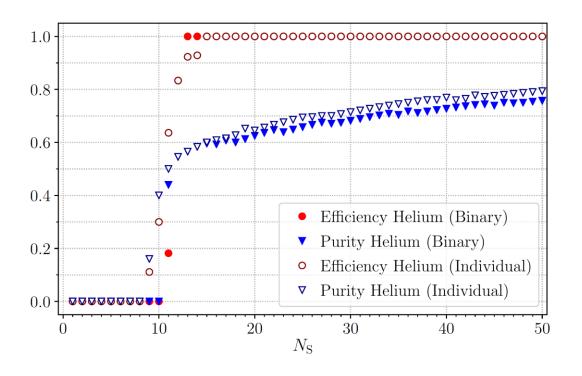
N points in K dimensions

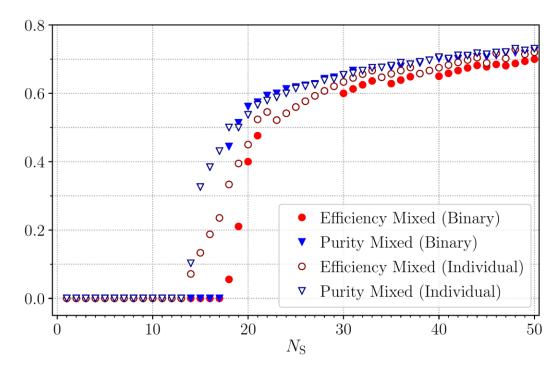
¹ https://arxiv.org/abs/1801.07829

Individual Classifier

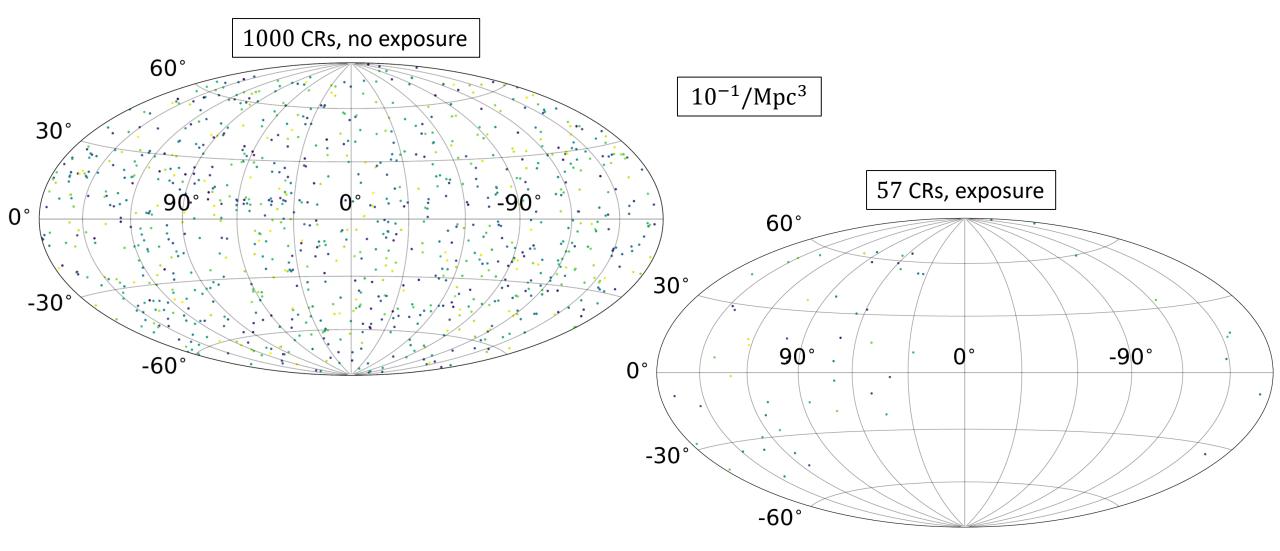
Comparison of strategies to achieve classification of individual cosmic rays

- 'Binary': Binary cosmic-ray sky classifier with threshold
- 2. 'Individual': Network explicitly trained to classify individual CRs (1000 outputs)

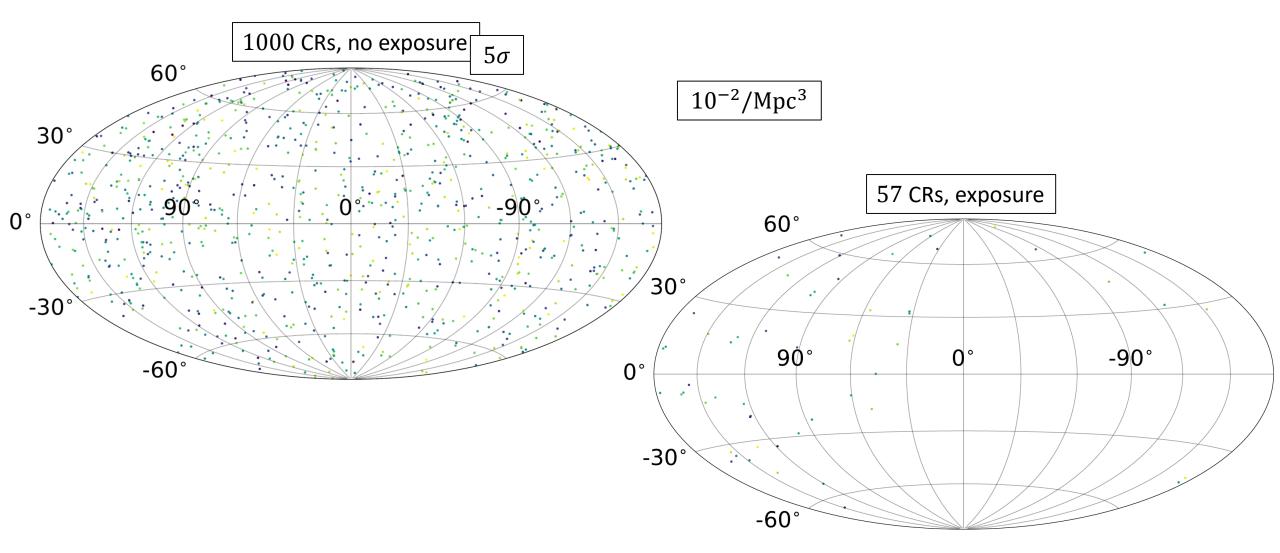




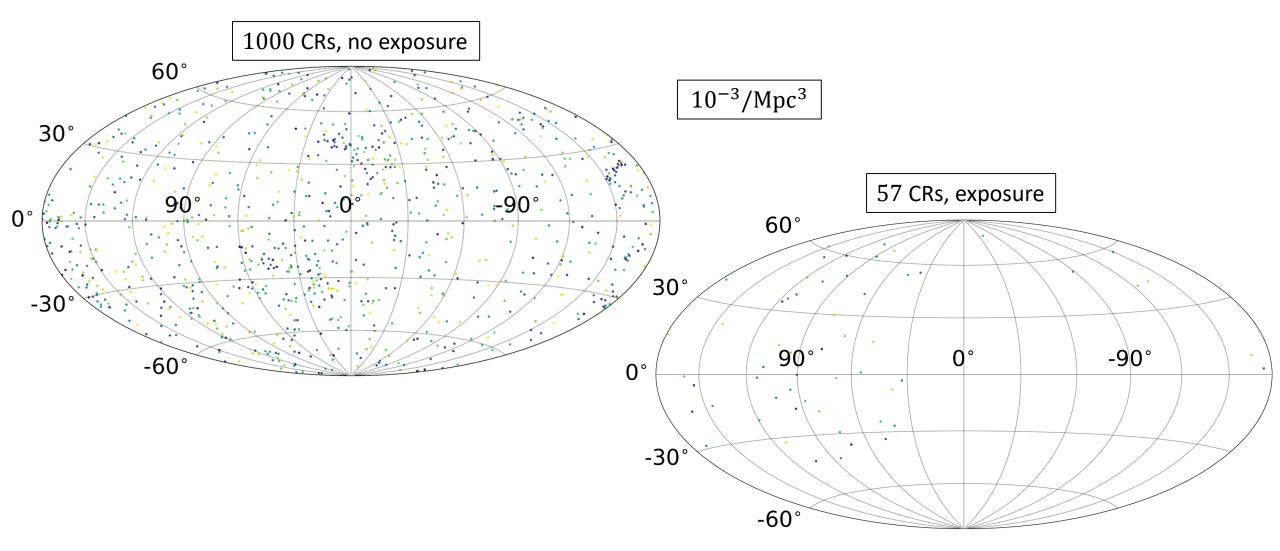
(Cosmic-ray skies that result in the median network-response of a given source density.)



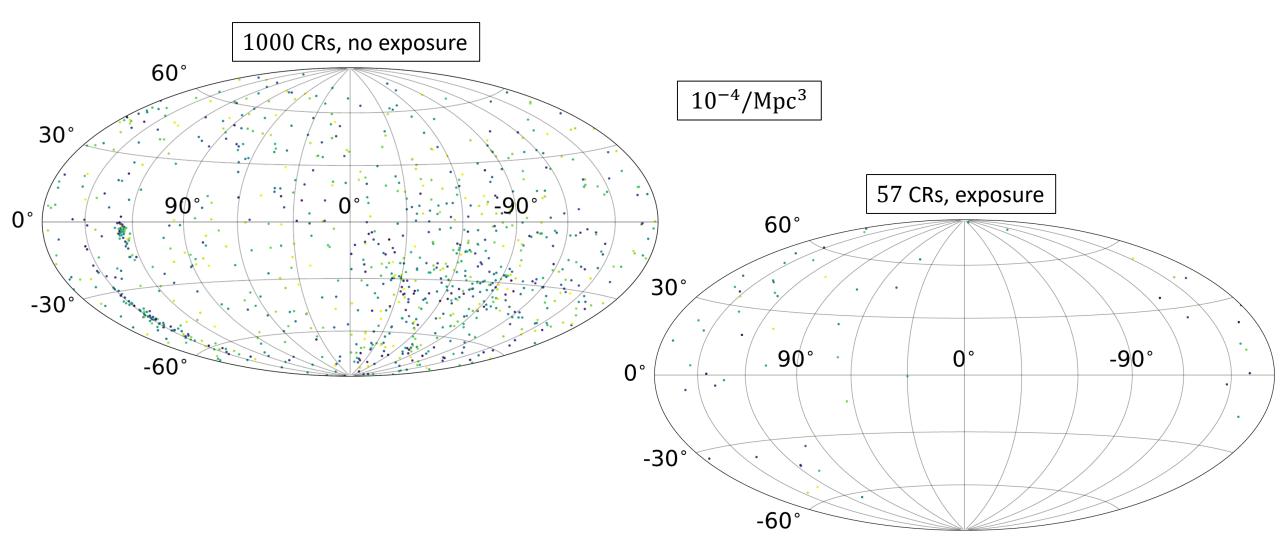
(Cosmic-ray skies that result in the median network-response of a given source density.)



(Cosmic-ray skies that result in the median network-response of a given source density.)



(Cosmic-ray skies that result in the median network-response of a given source density.)



Training on simulation of multiple sources

- Based on Auger (parameters from Combined Fit): 1000 cosmic rays with E > 40 EeV,
- Simulate on the fly during training \rightarrow no overfitting
- Train on $\rho_{\rm S}=10^{-3}/{\rm Mpc^3}$ or $\rho_{\rm S}=10^{-2}/{\rm Mpc^3}$ (with exposure)
- Deflection strengths and directions maps from JF12 randomly rotated and used for all cosmic rays
- Turbulent deflection: 50% of maximum during training

