

Real-Time Trigger and Online Data Reduction based on Machine Learning Algorithms on FPGAs

Steffen Bähr



Focus of this talk

Specialized hardware for neural networks

- Focus on FPGAs
- Close to sensor integration
- Choices of possible FPGAs
- Frameworks for architecture configuration
- Trigger application case from the Belle II experiment

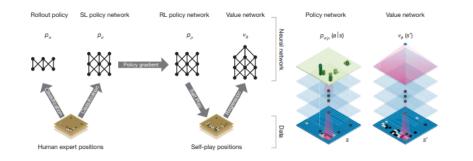
The ITIV of KIT

- Electrical Engineering Institute
- Focused on Processor Architectures/ Embedded Computing
- Optical Engineering
- Testing for Autonomous Driving
- Founded by Karl Steinbuch
- Established the term Informatik
- Invented the Learning Matrix
- Early Precursor of the Neural Networks

© ZKM | Zentrum für Kunst und Medien, Foto: Jonas Zilius

- Lernmatrix discussion paper
- https://www.facebook.com/KIT.Karlsruhe.Official/videos/216553087370 2056/

Machine Learning on the Rise



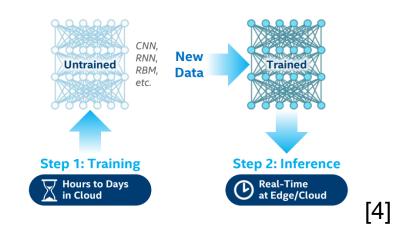
- Google DeepMind AlphaGo [1]
 - First time a human lost to Al playing GO
- Machine Learning for large scale data processing [3]
 - Cost-efficient
 - Reasonably precise
 - Enabled by availability of processing resources

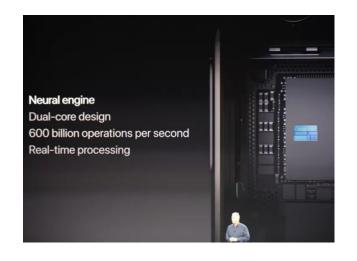
- Google AI Assistant [2]
 - Automated restaurant reservation



Hardware for Machine Learning

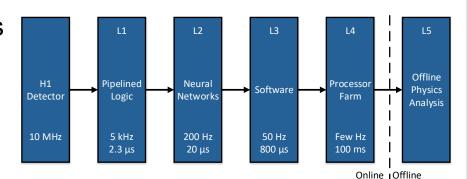
- ML typically associated with large data centers
- Development of dedicated hardware solutions for ML tasks
 - Edge computing
 - Efficient local computing
- Push towards closer integration sensors and embedded devices
 - Dedicated neural processing
 - Image processing to add blur effect
 - Fast unlock mechanisms
 - Apple A11 Bionic [5]
 - Kirin 970 [6]





Data in High Energy Particle Physics

- Generation of massive data rates at modern experiments
 - 480 Tbit/s at HL-CMS (CERN) [7]
 - <u>324 Million</u> channels at 1 GHz at Gigatracker [8]
- Trigger and data reduction systems
 - Trigger decides when to readout
 - Data reduction what to readout
 - Implemented close to the sensors
 - Multi-staged often FPGA-based
- Steadily increasing complexity
 - Tighter requirements from µs to ns latency
 - Higher amount of data channels to support
 - More complex behavior of the experiment





Challenges

Integration

- Support of High Data Rates
- High demand for high-speed IO
- Different parallel asynchronous sources

Functional

- High precision classification
- Online Monitoring for Validation

Hardware Architecture

- Low-Latency
- Pipelined and free of dead-time
- Flexible for changing conditions
- Real-Time Processing

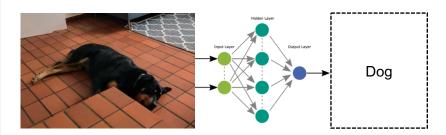
Challenges

Integration

- Support of High Data Rates
- High demand for high-speed IO
- Different parallel asynchronous sources

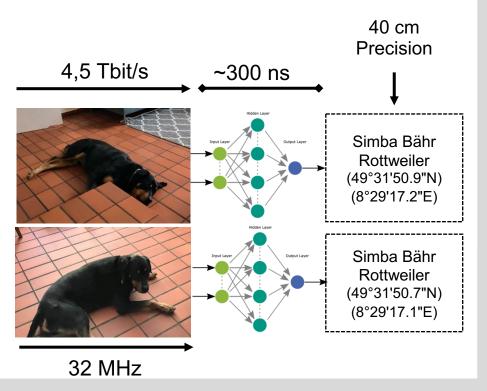
Functional

- High precision classification
- Online Monitoring for Validation



Hardware Architecture

- Low-Latency
- Pipelined and free of dead-time
- Flexible for changing conditions
- Real-Time Processing



Presented Application Cases

Neural network based trigger system at first level

- Architecture fulfilling all requirements
- Design Flow
- Integration
- Experimental Results
- Upgrade Prototype

Online Cluster Analysis for particle identification

- Architecture fulfilling all requirements
- First NeuroBayes implementation
- Design Flow
- Integration

MACHINE LEARNING ON SPECIALIZED HARDWARE

Hardware for Machine Learning

Where Deep Learning has been Where state-of-the-art traditionally happening ... Development is moving towards ... RYZEN Nx 100G 600G Direct RF [10] [11] [9] [12] [13] Soft IP Hard IP CPU GPU ASIC Flexibility Efficiency **FPGA Systems Coprocessor**/ **Dedicated Circuit** Microsoft Brainwave **Heterogeneous ARM SpiNNaker** DeePhi/Xilinx Google TPU Memristor Baidu SDA PCM Xilinx ACAP Intel/Altera RRAM Intel Nervana IBM PowerAl **New Technologies** Wave Comp.

Amazon AWS F1

GPP/GPUs for ML

GPP in ML

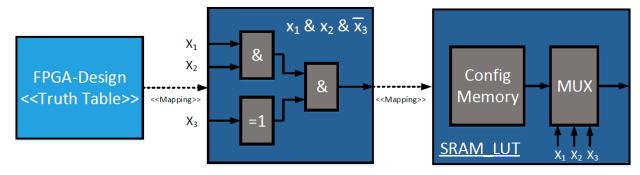
- Highest programmability
- Limited Parallelism
- Traditional memory structures

GPUs in ML

- Probably highest productivity
 - Programming Tools + Performance
- Not deterministic latency (internal scheduling)
- Interfacing often dedicated i.e. PCIe
- No additional flexibility compared to FPGAs
- Power Efficiency

FPGAs

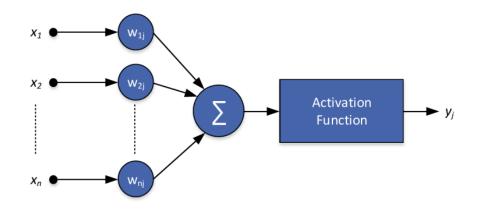
- Highly flexible processing resources
 - Can be configured to recreate any logical function
 - Deterministic behaviour
 - Power efficient with sparse operations

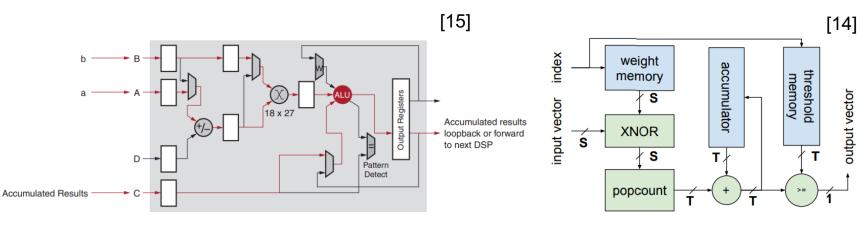


- Special processing units
 - Gigabit Transceivers of for high data rates
 - ADCs and DACs for high frequencies (RF-SoC)
 - Digital Signal Processors (DSP) for multiply and accumulate
 - Local Block RAM Memory (BRAM) for local access
- Best Power-Performance-Flexibility characteristics

Neural Networks on FPGAs

- Artificial Neuron Processing
 - Heavy DSP usage
 - On-chip memory for weights
 - Fixed point operation
 - Only operations with int8
 - Binary networks with XNOR
 - Less Computational Effort
 - Less Accuracy (~3% loss on AlexNet)





Neural Network Accelerators

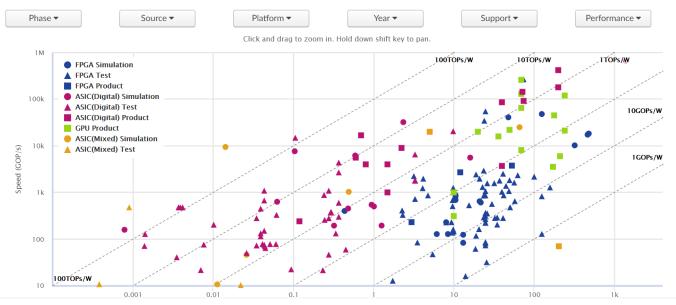
Study about neural network accelerators by tsinghua university :

https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/

Neural Network Accelerator Comparison

For use in publications and presentations please cite this data collection as follows:

K. Guo, W. Li, K. Zhong, Z. Zhu, S. Zeng, S. Han, Y. Xie, P. Debacker, M. Verhelst, Y. Wang. "Neural Network Accelerator Comparison" [Online]. Available: https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/



FPGA Selection

Viability of FPGA platform often determined by

Number of DSP units and on-chip memory

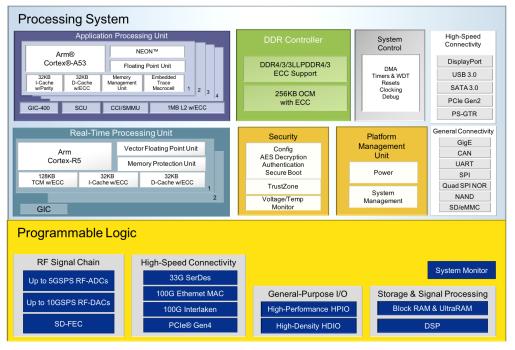
Resource	XC6VHX565T	XC7VX1140T	XCVU190	VU13P
Slices	566,784	1,139,200	1,074,240	1,728,000
DSPs	864	3,360	1,800	12,288
BRAM	32.832 mb	67.680 mb	132.9 mb	454.5 mb
GTX	48	-	-	-
GTH	24	96	60	-
GTY	-	-	60	128

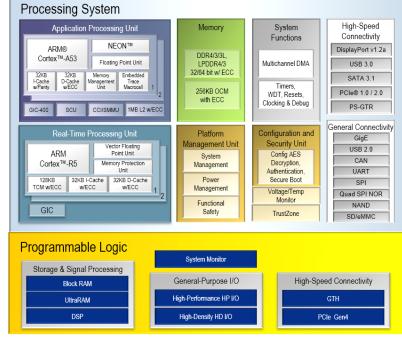
- On-chip BRAM for lowest latency weight loading
 - Neural Trigger Example :
 - 5 Networks in parallel held in memory
 - 5*18 Bit*2349 = 211 kBit
 - 10% Total memory
- Secondary features :
 - General Purpose Processing
 - Interfacing

- Parallel MAC operations = #Number of DSPs
 - Neural Trigger Example
 - 2349 total MAC operations
 - 470 DSPs used
 - Latency: 2349/470 = 5 Clock Cycles

FPGA Selection (II)

Specialised FPGAs
ZYNQ Ultrascale+
RF-SoC





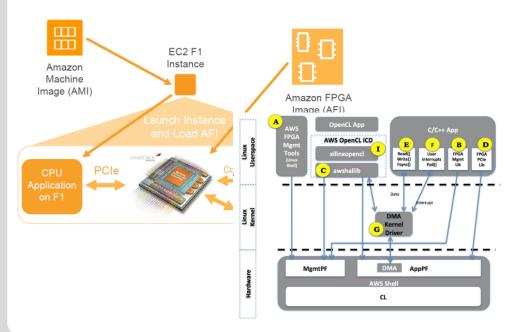
[16]

18 February 18, 2020 Steffen Bähr

Cloud-based Application

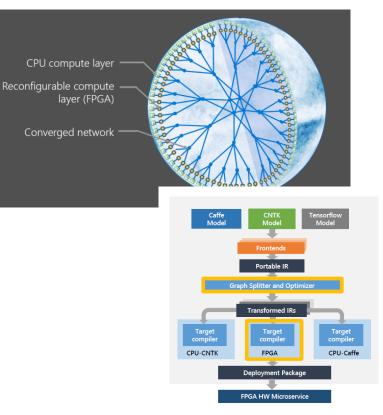
Amazon AWS F1 [24]

- FPGA Based Acceleration in the Cloud
- SDK for Usability
- FPGA Deployment scheme for integration into infrastructure



Microsoft Brainwave [25]

- Large Scale FPGA Network
- Framework FPGA Mapping
- ML Tool Support



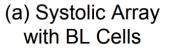
ASICs for ML

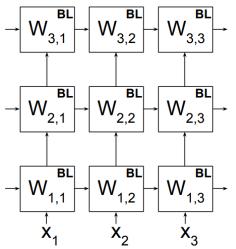
NVDLA

- Al open source processing Cores
- Developed by NVIDIA
- Chosen by ARM for dedicated coprocessing
- Programming Toolchain
- Intel Nervana
- Google Edge TPU for IoT

Tesla ASIC

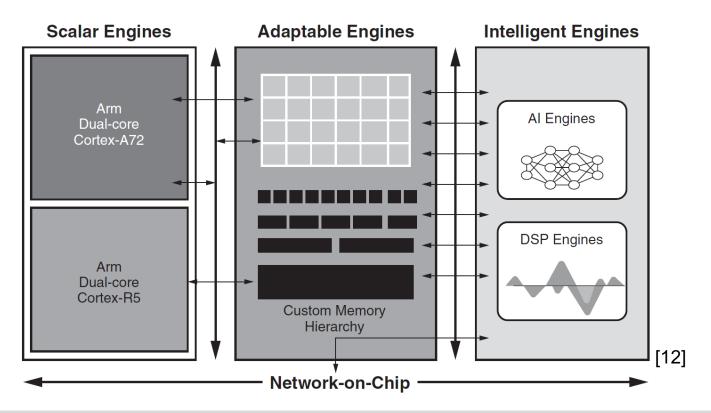
- Dedicated CNN Accelerator
- Used for a Self-Driving SoC
- Achieves 36 TOPS





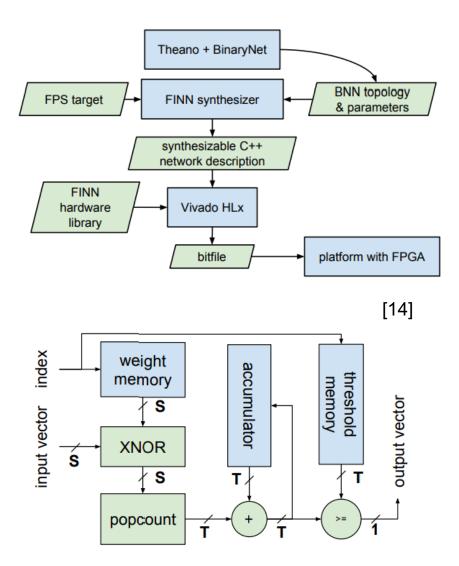
Future platforms – Xilinx ACAPs

- Combination of different processing structures
 - ARM Processor for general purpose (Slow Control)
 - Flexible FPGA-like array (Preprocessing)
 - Dedicated AI-Acceleration (Network)



FRAMEWORKS FOR ARCHITECTURE INFERENCE

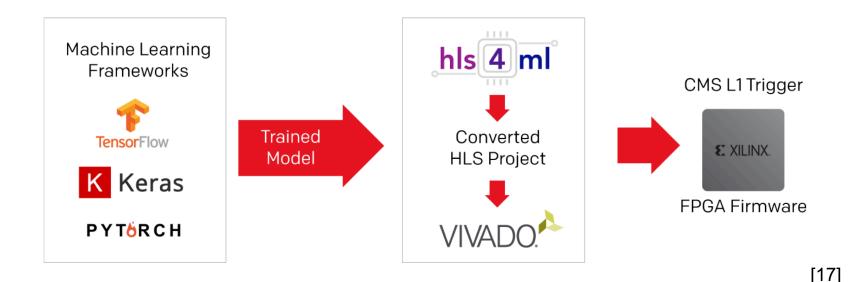
FINN : Framework for Fast, Scalable Binarized Neural Network Inference



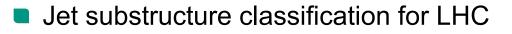
- Framework co-developed by XILINX, used as a reference
- Integration of popular DNN Tooling (Theano)
- Early performance and efficiency estimation using Roofline model
- Vivado HLS supported network description
- Optimized Binarized Neural Networks Library of IP Cores

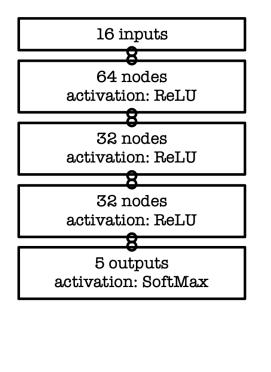
HLS4ML

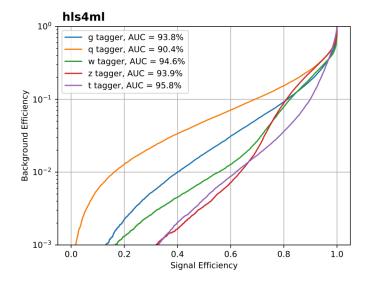
- Vivado HLS Centric approach to implement neural networks [10]
- Support of modern ML frameworks
- Library of algorithms such as CNN, RNN ... Supported
- Efficient compression of the network
- Architecture instantiation
- https://fastmachinelearning.org/hls4ml/



HLS4ML – Case Study







Network	Uncompressed network	Compressed network	
AUC / Expected AUC	99.68%	99.55%	
Parameters	4389	1338	
Compression factor	-	3.3×	
DSP48E	3329	954	
Logic (LUT + FF)	263,234	88,797	
Latency	75 ns	75 ns	

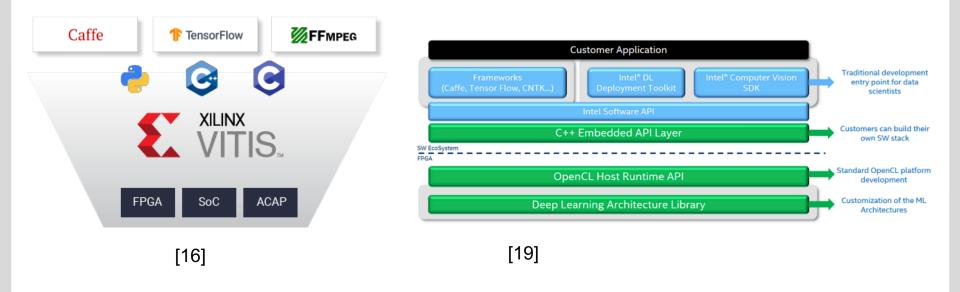
[18]

Vendor Tools

Xilinx Vitis Approach

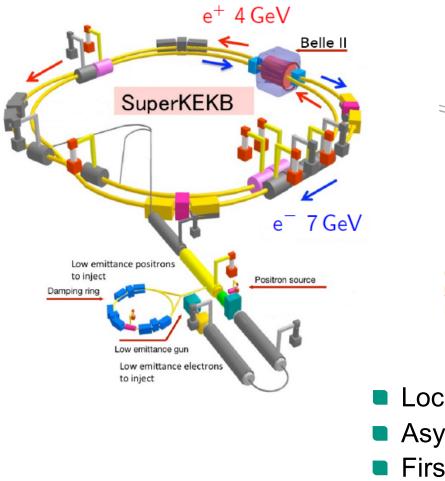
Intel FPGA DLA

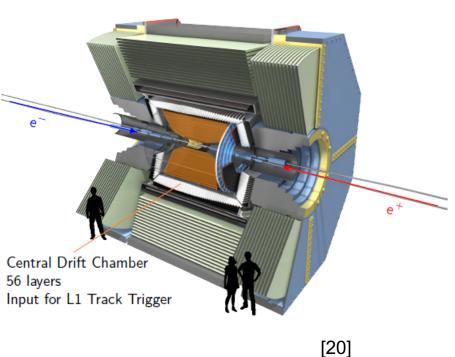
- Unified Tool Environment
- Interfacing with ML Tools
- Support of High-Level Languages
- Configuration of underlying Hardware



APPLICATION CONTEXT

Belle II

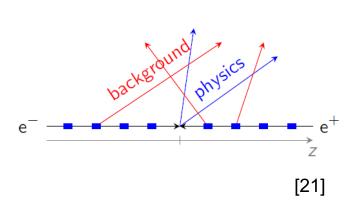


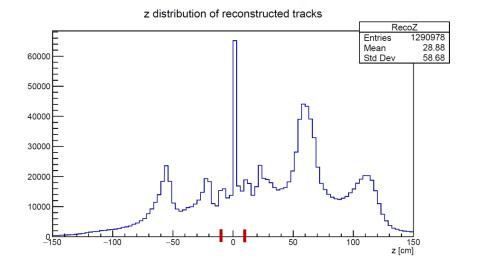


- Located at Tsukuba, Japan
- Asymmetric e⁺e⁻ collider
- First Collisions since April 2018
- Targets world record luminosity

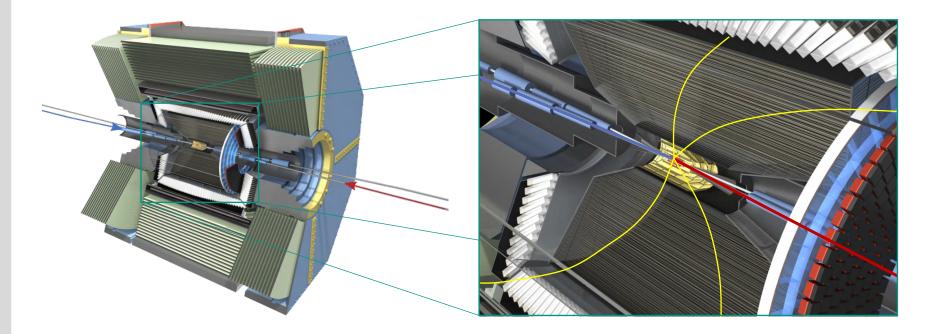
L1 z-Trigger for Belle II

- L1 track suppression
 - Many particles are not related to collisions
 - Tracks outside the point of collision have to be suppressed from 130 kHz to 30 kHz trigger rate
- Neural z-Vertex Trigger
 - Estimation of 3D-Track
 - 300 ns processing latency
 - Dead-time free
 - Multi layer perceptron



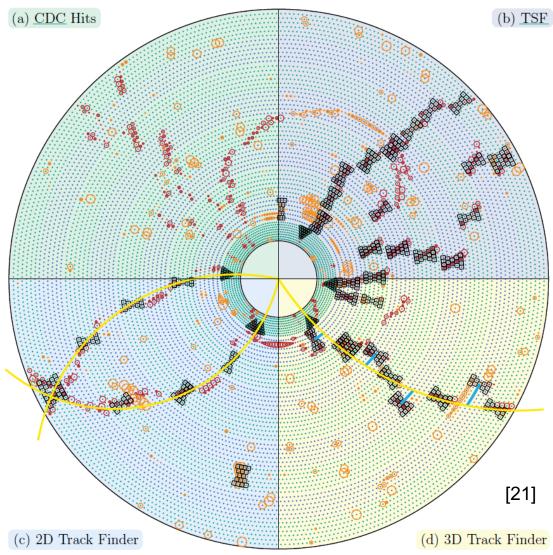


The neural z-Vertex Trigger



CDC Trigger Sub-System

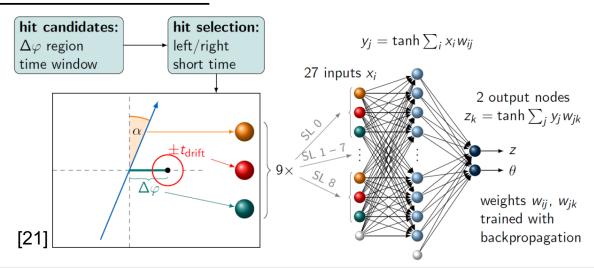
- Drift Chamber of Belle II used for tracking
 - 14336 Wires
 - 56 Layers of Wires
 - 9 SuperLayers
- Alternating Orientation
 - Axial wires parallel to beamline
 - Stereo wires aligned with an angle to the z-Axis
 - Stereos essential for 3D tracking



Neural Trigger Algorithm

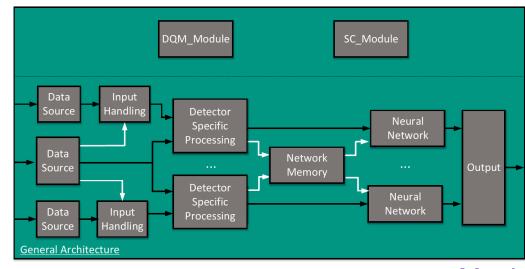
- Combination of detector-specific preprocessing and selected neural network
- Each SuperLayer of the CDC (~5 layers of wires) three inputs are generated

Name	Description
α	Crossing angle of the track relative to the normal of the crossing point of the track with the circular path of the layer.
$\pm t_{drift}$	Drift time of the TS. The sign indicates the direction of the pass-
	ing particle either left or right. It is not used in case of an un-
	known direction as defined by the TSF.
φ_{rel}	Azimuth angle of the particle relative to the angle of the sense-
	wire.



REALISATION

General Architecture Template



Integration

- Multiple parallel input sources
- Distinct detector handling
- Control flow for activation

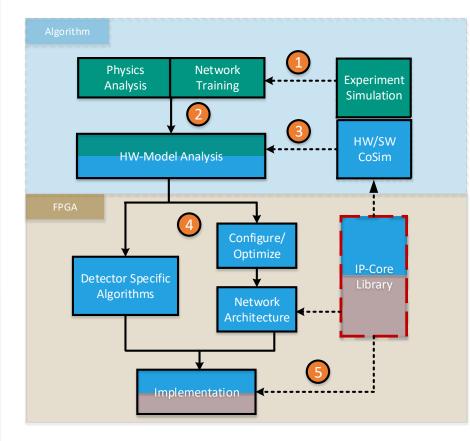
Processing

- Detector Specific ; Preprocessing for Neural Network
- Multiple Neural Networks ; Special case networks
- Fixed point arithmetic
- Minimum bit widths
- Retiming enabling

Monitoring

- Data Quality Management
- Slow Control

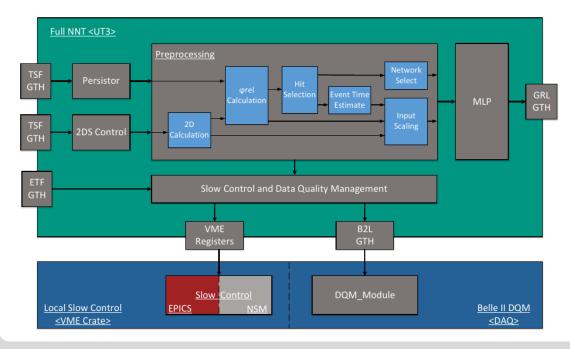
Design Flow for Architecture Inference



- Architecture Configuration Framework
 - Physics domain description of network
 - HW/SW Co-Simulation
 - Generation of all VHDL-Files
 - Semi-Automated configuration of architectural parameters
 - Belle II software framework for validation
 - IP-Core library for neural network

Architecture – Current NNT

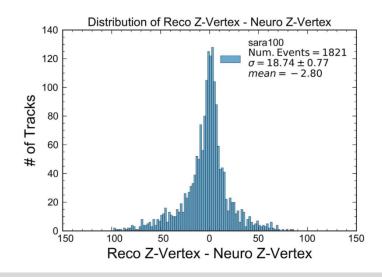
- Processing with low latency MACs [Bä,17,18]
 - Multi Layer Perceptron
 - 2 Layers, 81 Neurons, 18 bit weights, 13 bit inputs, 5 weight sets
- Preprocessing
 - Network reduction from O(10^6) to 5
 - Parallel synchronized data paths

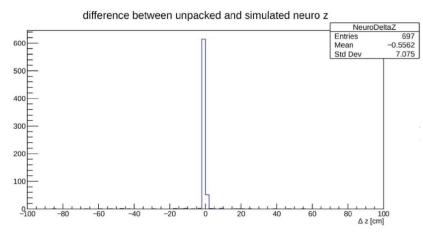


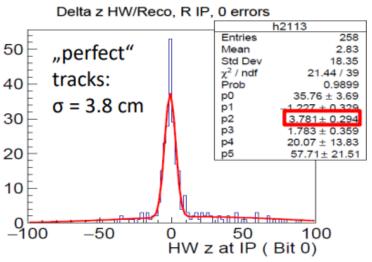
SLICE	Register	DSP	BRAM	
46%	14%	53%	49%	
Latency	Latenc	y	Frequency	
Latency 288ns	Latency 32 clock		Frequency 127 MHz	

Evaluation NNT – Recent Runs

- Collision results from december 2019
- Currently active with a z-Cut on 40 cm
- Some tracks with problematic drift times







CONCLUSION

Conclusion

- Machine Learning on FPGAs
 - Highly flexible, deterministic, many IOs
 - Supported by tool vendors, open source efforts
 - Frameworks for ML Tools and C++ Integration
 - Multiple future solutions in development

- Neural z-Vertex Trigger
 - Suppression of tracks outside of the z-Vertex
 - FPGA-based implementation
 - Integrated into Belle II Experiment operational within all requirements
 - 40 cm resolution of 3D-Track Parameters

END SLIDE

40 February 18, 2020 Steffen Bähr

References (I)

- [1] D. Silver "Mastering the game of Go with deep neural networks and tree search" Nature 529, 484-489 (2016)
- [2] Google "Google Al" <u>https://ai.google/</u>
- [3] Dean, J. "Recent Advances in Artificial Intelligence and the Implications for Computer System Design" Hot Chips 2017
- [4] Bradford, D. et al. "Knights Mill: New Inter Processor for Machine Learning" Hot Chips 2018
- [5] Apple "Apple Special Event 2017", https://www.apple.com/de/appleevents/september-2017/
- [6] HiSilicion "Kirin 970 Processor" <u>http://www.hisilicon.com/en/Media-Center/News/Key-Information-About-the-Huawei-Kirin970</u>
- [7] Amstutz, C. "Evaluation of an Associative Memory and FPGA-based System for the Track Trigger of the CMS-Detector"; KIT Disseration 2016
- [8] Fiorini, M. et al. "The NA62 gigatracker: Detector properties and pixel readout architectures," Nucl. Instrum. Meth. A 624 (2010) 314.
- [9] Paul's Hardware
- [10] Nvidia Inc. "GPU-BASED DEEP LEARNING INFERENCE"
- [11] Xilinx Inc. "Virtex UltraScale+ FPGAs Product Brief"

References (II)

- [12] Xilinx Inc. "Versal: The First Adaptive Compute Acceleration Platform (ACAP) "
- [13] Human Brain Project ; https://www.humanbrainproject.eu
- [14] Y. Umuroglu "FINN: A Framework for fast scalable binarized Neural Network inference"arXiv:1612.07119
- [15] Xilinx Inc. "Deep Learning with INT8 Optimization on Xilinx Devices" WP486
- [16] Xilinx Inc. Xilinx.com Product site
- [17] Xilinx Inc. "Artificial Intelligence Accelerates Dark Matter Search"
- [18] DUARTE, J. et al.: Fast inference of deep neural networks in FPGAs for particle physics. JINST, 13(07):P07027, 2018.
- [19] Intel "Machine Learning on Intel® FPGAs" White Paper
- [20] ABE, T .: Belle II Technical Design Report 2010
- [21] Neuhaus S. "Track Reconstruction at the First Level Trigger of the Belle II Experiment" 2018
- [22] Schnell M. "Development of an FPGA-based Data Reduction System for the Belle II Depfet Pixel Detector" – Dissertation Uni Bonn
- [23] Pulvermacher C. "dE/dx particle identification and pixel detector data reduction for the Belle II experiment" – Master Thesis KIT

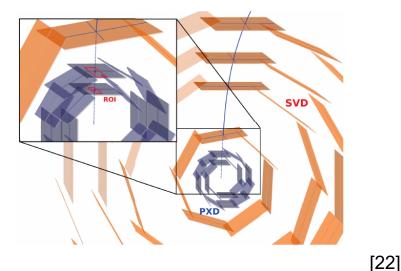
References (III)

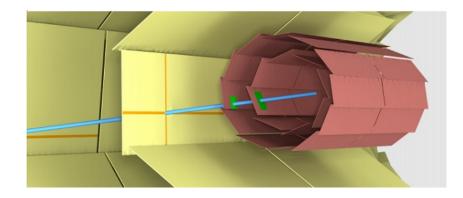
- [24] Atomic Rules "WP: EXPERIENCE WITH THE AMAZON F1: A WHITE PAPER"
- [25] J. Fowler et al. "A Configurable Cloud-Scale DNN Processor for Real-Time Al"

Trigger and Data Reduction for Belle II

- Particle identification
 - Current data reduction in Belle II is suppressing interesting particles
 - Parallel approach to rescue data from interesting particles necessary

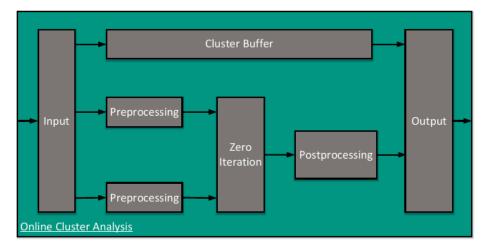
- Online Cluster Analysis
 - NeuroBayes Algorithm for particle identification
 - 200 million analyses per second
 - 90% noise reduction
 - Maximum signal efficiency

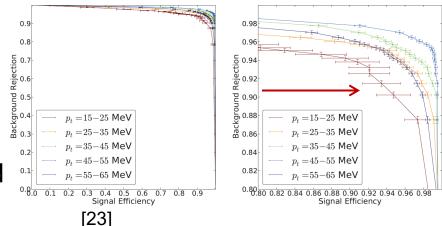




Online Cluster Analysis

- Processing with High-Throughput MAC [Bä,15]
 - NeuroBayes Algorithm
 - Dedicated Preprocessing (CDF)
 - Fix Point operation 0.00001 accurate
- All architectural requirements fulfilled
- Signal Efficiency : 95 %
- Noise Reduction : 90 %





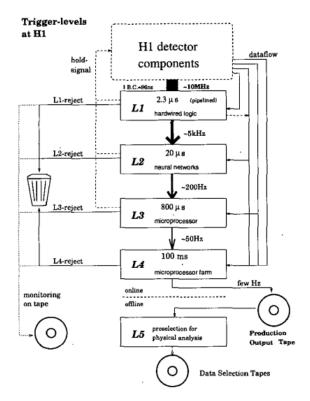
SLICE	Register	DSP	
2 % / 52 %	3% / 57 %	3 %	
Latency	Latenc	у	Frequency

13 clock cycles

39ns

350 MHz

ML Application in high energy physics

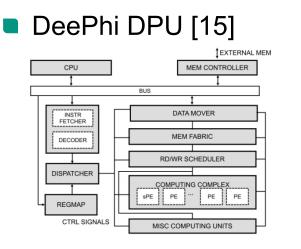


- Tracks **EM-Cluster** K^{\cdot} π^0 $D^0 D^+ D_S$ J/ψ $D^{*0} D^{*+} D^{*+}_{S}$ B^0 B^+ 10 10 6, 10 10
- L2 Neural Network Trigger for the Hera Experiment [5,2003]
 - Custom Processor CNAPS
 - 20 µs Latency budget

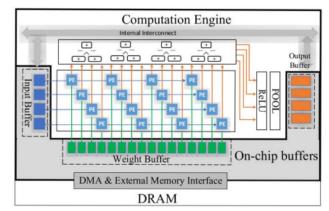
- Neural Network based Full Reconstruction for B Mesons [6,2010]
 - Usage of the specialized NeuroBayes Algorithm
 - Offline Analysis

Signal

State-of-the-Art – Neural Processing on FPGA



Caffeine [16]



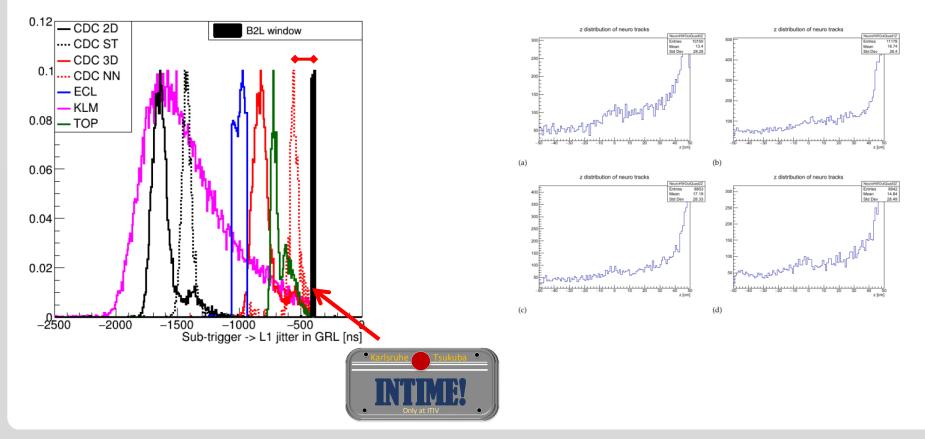
General solutions with programmable processing cores

- Off-Chip Memory usage
- Instruction sets
- High-Performance compression and optimization
- Dedicated architecture required for physics application
 - Only on-Chip memory due to latency
 - High precision processing required
 - Interchangeable networks without external memory access

Evaluation NNT – Basic Functionality

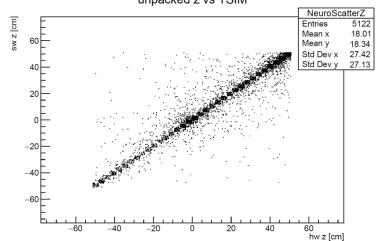
- Latency
 - Close to deadline
 - Still within limits

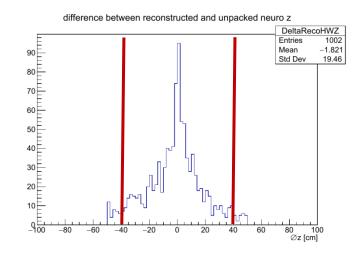
 Hardware estimations for all quadrants

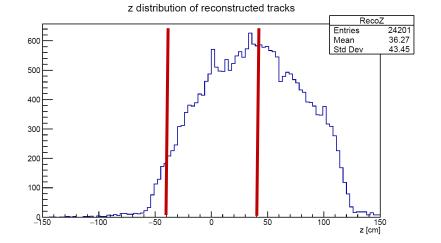


Evaluation NNT – Estimation Functional

- Correlation plot show good match between hardware and software
- Suppression can be applied with 40cm cut, currently sufficient
- Network not trained on real data
 Worse performance was expected







Integration – Application Case NNT

- Interfacing
 - 60 Gigabit Transceivers Lanes required
 - Distributed across 4 boards
- Detector Handling
 - Drift chamber with specific behavior
 - Data arrives over time
 - Generation of Pool of Sensor data within time frame
- Platform Universal Trigger Board 3
 - Virtex-6 380HXT
 - Maximum amount of Gigabit Transceivers

