

H.

AUGER

OBSERVATORY

*X*_{max} Reconstruction with AugerPrime using Deep Learning

Sonja Schröder Bergische Universität Wuppertal

Big Data Science in Astroparticle Research - Workshop 17-19 February 2020

18.02.20

Pierre Auger Observatory

Largest Observatory measuring Extended Air Showers (EAS) initiated by cosmic rays

Surface Detector (SD)

- 1660 Water Cherenkov Detectors (WCDs)
- Determine primary particle energy based on amount of Cherenkov light produced in each station
- Determine trajectory of incoming cosmic ray with differences in detection time of stations

Fluorescence Detector

• Fluorescence light traces longitudinal shower development

Radio Detector

 Measures electromagnetic component of EAS in form of short radio pulses

Upgrade AugerPrime

Plastic scintillator detector on top of SD stations as part of upgrade 'AugerPrime'

Two detectors (WCD and SSD) with different responses to muonic and electromagnetic component of air showers

Improved event wise measurement of mass composition of primary particle using the 24/7 on-time of the SD

Goal of this analysis:

- Reconstruction of X_{max} with AugerPrime simulations
- Using only
 - WCD and SSD traces
 - Arrival time in stations
 - SD reconstructed Energy and Shower Axis (Zenith)

3

CORSIKA Simulations & Setup

CORSIKA simulations

- 5000 proton, 5000 iron
- Energy range: 18.4 20.5 log(E) \rightarrow flat in energy
- Zenith range: 0° 60°

Offline Framework

- SD and SSD detector simulations
- Throwing each event onto different position in the array 30 times

4

Preprocessing of Full Detector Simulations

Using raw SSD and WCD traces, remove empty bins from start before trigger Norm traces by dividing by calibration constant (single muon charge) Hexagonal to Cartesian grid, zero-pad with "empty" stations, centered around hottest station

Network Architecture

Sonja Schröder | soschroeder@uni-wuppertal.de

Network Architecture

X_{\max} Reconstruction Setup

Input data fed to model via fit_generator/predict_generator Keras functions		# Events
	Total	234480
→ Streaming input files from directory with generator function	Train	140704
	Validate	46896
Evaluate trained network based on	Test	46880
 Correlation coefficient of X_{max,true} and X_{max, DNN} distributions 		Settings
	Batch size	16
 Check reconstruction bias and resolution 	Epochs	10
• Split $X_{\text{max,true}}$ and $X_{\text{max,DNN}}$ values by energy bins (size 0.1 log ₁₀ eV)	Learning rate	0.001
	Training time	~ 1.5 days
• Fit $\Delta X_{\text{max}} = X_{\text{max, true}} - X_{\text{max, DNN}}$	(on GPU cluster)	
distribution for each energy bin with superposition of 2 Gaussian distributions		
 µ from fit represents the reconstruction bias 	GPU Cl CPU: Intel® Xee	luster on® E5-2660

• σ from fit represents the **reconstruction** resolution

GPU Cluster CPU: Intel® Xeon® E5-2660 RAM: 128 GB GPU: 5 × NVIDIA Tesla K20m Using: Tensorflow + Keras

X_{max} Reconstruction Results (combined)

X_{max} Reconstruction Results by Primary Particle

10

Elongation Rate (ER)

Elongation rate:

- Rate of change of the shower maximum with logarithm of energy
- X_{max,true,corr} =

X_{max} Reconstruction with AugerPrime/DNN Sonja Schröder | soschroeder@uni-wuppertal.de

X_{\max} Reconstruction Results with ER

Event Weighting (EW)

 X_{max} distribution for training/validation is not flat

Events with X_{max} of ~720 g/cm² seen by model more often

How to prevent model from drawing prediction from ~ $< X_{max} > ?$

- \rightarrow Event weighting:
- Re-weighting X_{max} distribution by assigning higher weight to Xmax values with less statistics

 \rightarrow Network pays more attention to events with higher event, i.e. mimicking flat distribution, pulling network away from the mean

Providing weights for each event in fit_generator function via sample_weights parameter

e.g. to get weights between 1 and 5: $w = \frac{1}{\left(\frac{hist_{counts}}{max(hist_{counts})}\right) \times 0.8 + 0.2}$

X_{max} Reconstruction Results with ER & with EW

14

Outlook

Identified points for improvement:

- 9 × 9 station grid possibly cuts out stations with signal especially at higher energies
- \rightarrow Increase grid size to not cut off outer stations
- Bias still challenging, Iron always heavier than MC / proton always lighter
- → Implement different type of model structure:
 - Network that is similar to speech recognition/comparison/identifying fake speech,...
 - → Trace by trace comparison to extract features based on differences in trace types
 - Hexagonal convolutions (6-fold rotational symmetry), especially suitable for tasks with already hexagonal layout

Additional plans/ideas:

- Further increase event statistics and add Helium and Oxygen as primaries
- Primary-specific event weighting
- Try on real data from pre-production array

Conclusions

 X_{max} reconstruction with DNN is possible

- Currently correlation of 82%
- Resolution of ~ 30 g/cm²

Successfully implemented

• X_{max} correction via elongation rate

- \rightarrow removing energy dependent bias
- X_{max} event weighting to mimic flat distribution
- \rightarrow reducing primary dependent bias

Current model already performs better than classic methods

BACKUP SLIDES

Loss Evolution over 55 Epochs

Example Fit Double Gaussian

Full Network Structure

X_{max} Reconstruction with AugerPrime/DNN Sonja Schröder | soschroeder@uni-wuppertal.de

X_{max} Reconstruction Results with ER

X_{max} Reconstruction Results with ER & with EW

Sonja Schröder | soschroeder@uni-wuppertal.de

