i ysics
oooooooooooo

Determining the distribution
of interstellar gas with
information field theory

Andrea Vittino (TTK, RWTH Aachen)
with Philiop Mertsch

Big Data Science in Astroparticle Research Workshop

Aachen, 17-19 February 2020



Outline

e Motivation
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s distributed”
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+ What is information field theory”? How do we
intend to use it to infer the gas distribution?



Outline

e Motivation

+ Why are we Iinterested in the interstellar gas
distribution?



Cosmic rays produce gamma-rays
By interacting with the interstellar gas, cosmic rays produce gamma-rays

Y rays as a charged particle tracer
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Observations of diffuse gamma-ray emission provide a direct probe
of spatial densities and spectra of CRs in distant locations, far
beyond the reach of direct measurements



Gamma-ray data

Fermi-LAT five-year skymap



Gamma-ray data

Fermi-LAT five-year skymap

pion decay Bremsstrahlung Inverse Compton
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It we know the gas
density, we can map
CR protons across
the Galactic plane



CR proton density - the role of CR transport

Results do not agree with the prediction from standard CR transport models.
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CR proton density - the role of CR transport

Results do not agree with the prediction from standard CR transport models.
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Alternative transport models have been proposed:
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CR proton density - the role of CR transport

Results do not agree with the prediction from standard CR transport models.

-2.3
-24
2.5
-2.6
2.7

_§_‘_+“_,}>++‘

—
—

prediction from standard CR transport models

Acero et al. (Fermi-LAT Coll.), 2016

-2.8

proton spectral index

1

2.9
-3
-3.1

.

t

These alternative transport models could
play a major role in assessing the properties
of CR sources in the inner Galaxy (e.g., the
Pevatron discovered by HESS in 2016)

Galactic latitude (degrees)

T TR T BT |
00.5 00.0 359.5 359.0

Galactic longitude (degrees)

|
01.0

00.0
Galactic longitude (degrees)

359.5

Abramowski et al. (HESS Collaboration), 2016

lU(‘ A AL AN A NSRS

11 11111l

T

10! 1/r

1/r°2¢ 3 ; 3

modified transport model

T T [ TTTTT]
Lol

10°

standard transport model

TTTTTT]

Wer (> 10 TeV) [1073eV/cm?]

Lol

KRA
—— KRAgamma

10—1 T I | | |
50 100 150 200 250

r [pcl

300

Gaggero, Grasso, Marinelli, Taoso, Urbano, 2017




Gamma-ray data

Fermi-LAT five-year skymap



Gamma-ray data

Fermi-LAT five-year skymap

~ Galactic Center

e Highest gamma-ray flux from dark matter annihilation
eBut, it is a very complicated environment

e Claims of an excess (with respect to standard astrophysical
emissions) since 2009



The Galactic Center excess

Ackermann et al. (Fermi-LAT Coll.), 2017
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Dark matter

i‘ Dark matter
.u |
| ® cross sections close to the thermal

the excess.

o The Fermi-LAT coll. finds similar ,
~ excesses across the Galactic plane
' (-> upper limits

VS. point sources

Ackermann et al. (Fermi-LAT Coll.), 2017

3FGL unmasked

0.25; ——
: S NFW PS
' Lo — Disk PS
0.201- L Iso. PS |
> | Lo — NFW DM
= | A No NFW PS Template
£ 015 N T
o : CL 0.2L
o | 1o |
S | o]
EO']'OT L o1l
0 | [
(®] | [ T
o | [ I
0.05¢ o _ . . J
O.OOO !-5 1.0 1,5 A

fraction of flux [%]

10—23 —
| —— 6 year dSph 95% UL
_94 [ —— ¢NFW GC 95% UL
10 f —— NFW GC 95% UL
T 5
n —2
w1072
=
O e A
o 10—26 Thermal R(‘:}i(f.(jl"()h‘s Section }
) (Steigman+ 2012)
o} ]
e o7 Daylan+ (2014)
10 ; Calore+ (2014)
[ b — Abazajian+ (2015)
10—28....| R | ) R | Lo
10 102 10° 104
m, [GeV]

—

(Unresolved) point sources
|

' e spectrum and morphology of the excess are
also compatible with millisecond pulsars.
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Outline

e The problem : inferring the gas distribution

+ How do we observe the gas” How can we
use such observation to understand how gas
s distributed”



Interstellar gas

Both the atomic and the molecular hydrogen are traced through line emissions

atomic hydrogen molecular hydrogen
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H2 does not emit any radiation, so

transition between the hyperfine | one must use a tracer (typically CO).
levels of the ground state determine

the 21 cm line emission

CO emits lines in the transition
between rotational states



Velocity spectroscopy

» The line emission Is
Doppler-shifted because
the gas cloud is rotating

» Ditferent line-of-sight
velocities are associated
to different distances

» This allows for a .
deprojection of the £ 08)
observations (from ol DAWAN \ Jiu
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How do we deproject these data to get a map of the gas
responsible for the emission?




Velocity spectroscopy

Assuming that the motion is purely circular:

Galactic Centre Ra \




Velocity spectroscopy

Assuming that the motion is purely circular:

Galactic Centre R \ Sdin

wsr(R,£€) = V(R) cosy — Vi sin/



Velocity spectroscopy

Assuming that the motion is purely circular:

Galactic Centre Re \

vsr(R,€) = V(R)cosyy — Vo sinf =siné (
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Given a model of the Galactic rotational curve V(R), one can associate a

Velocity spectroscopy

velocity to each distance measured along a line of sight
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Issues

¢ The rotation curve of the

- Galaxy is uncertain : in the
inner Galaxy, deviations from a

purely circular motion might be
present. |

e Near - far ambiguity : within
the Solar circle, objects at
different distances can have the
same velocity.

e Lack of resolution for
longitudes of 0° and 180°, if
motion is assumed to be purely
circular




Previous attempts at mapping the gas

Pohl, Engimeler, Bissantz, 2008

e Rotational curve derived from
a hydrodynamic gas flow
model (non-circular motion in
the inner Galaxy)

¢ This non-circular motion fixes
the lack of resolution at the
Galactic Center

y in kpc

e Fit to the longitude-velocity
diagram with a sum of
Gaussians, along individual
line-of-sights.

® [he gaussians in velocity

space are then deprojected in N . I

coordinate space 01 0.3 1.0 34 111 36.6 1205




Previous attempts at mapping the gas

Pohl, Englmeier, Bissantz, 2008

This method Iintroduces artefacts, related to the issues associated to the
deprojection technique.

simulated gas map
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Previous attempts at mapping the gas

forward modelling Johannesson, Porter, Moskalenko 2018

e Adopt a parametric model for the gas density and predict the
longitude-velocity diagram, which is then compared to the actual data

e PRO : Address near-far ambiguity and lack of resolution
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Previous attempts at mapping the gas

forward modelling Johannesson, Porter, Moskalenko 2018

e Adopt a parametric model for the gas density and predict the
longitude-velocity diagram, which is then compared to the actual data

e PRO : Address near-far ambiguity and lack of resolution
e CON : Not flexible enough
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Outline

e Our method : information field theory

+ What is information field theory”? How do we
intend to use it to infer the gas distribution?



Our approach

e Forward methods are not flexible enough to be really accurate

* Methods based on the deprojection of the longitude - velocity diagrams
suffer from several artefacts. Moreover, in such methods, line of sights
are treated separately

e However, correlations are expected to be present, as due to:

>large scale structure (disk, bulge, spiral arms, etc ...)
>»gravitational collapse
>turbulence in the interstellar medium

: Legend:
: / <€ observer

we need to keep

. line of sight

m gas parcel traCK Of

« gas velocity correlations and
gas veIo_city along " I

* line of sight eXplOlt them a

iy region with little
v distance information




Information field theory

We use Information field theory, a Bayesian method to infer a signal

from data T.A. EnBlin et al. 2009

| d :data (measured spectra)
d=f(s)+n S :signal (gas density)
“ n :noise (uncertainty in brightness
temperature)
signal P(d,s)  P(d|s)P(s) —H(d,s
T Plsld) =
Bayes' theorem Z4
P(d|3)éj/ H(d,s) = —logP(d,s) Hamiltonian
P(s) : .: Y (d,s) (_signal ] y
;/ i Lz, = /Ds (d]s) P(s) Fartition
(“data function
> data

-
—

Plot by Torsten EnBlin



The response function

We assume the measurement to be linear in both the signal and the noise

d=f(s)+n == d=Rs+n

The response function maps the signal space into the data space

>

s(To,ys, 2 d(l; b, v strong dependence on the
(e b3, #) (€3, b5 0k assumed rotation curve

(we assume a purely
More formally: circular motion)

aBy € cr . .. B = .
Ry = ATALAG /dﬁ/db/dv/dt{(lf in {ijk}) 0(v — vpsr(T))|7

coordinate along the line-of-sight

The response function is
built by mapping each bin
of the discretised signal
space into the data space




Example 1 : Wiener filter

It we assume both the signal and the noise to be Gaussian with known
covariances

p(s) =6(s,5)  p(n)=G(n,N)

Then the posterior distribution can be found easily:

p(sld) = G(s—m,D)
m = Dj posterior mean (Wiener filter)
_ —1 in—1p\y L . -
D = (ST'+R'N'R) information propagator

j = RIN"I information source




Example 1 : Wiener filter

mock signal : gaussian random field
signal model : gaussian random field
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results obtained with the NIFTy package



Example 2 : Critical Wiener filter

® The problem with the Wiener filter approach is that it is only usable if
we know the power spectrum of the signal.

® [he solution is to treat the power spectrum as a random variable,
within the framework of a generative model

power-spectra

. — reconstruction
\ —— ground truth

1072 4 ——— — :
10° 101 107 k




Example 2 : Critical Wiener filter

® The problem with the Wiener filter approach is that it is only usable if
we know the power spectrum of the signal.

® [he solution is to treat the power spectrum as a random variable,
within the framework of a generative model
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Example 2 : Critical Wiener filter

e vithin the generative model, the posterior distribution is estimated
through a variational inference approach

e \\Ve start by approximating the unknown posterior with a
parametrised distribution (e.g., Gaussian)

P(s|d) ~ Q(s|d) = G(m, D)

L

e The parameters of the distribution & are determined by
minimising the Kullback-Leibler divergence between Q and P

Q(s|d)
P(s|d)

KL(Q,P) = | DsQ(s|d)log
M /

e Numerically, this minimisation is done in several steps, which
subsequently updates the parameters of O




Example 2 : Critical Wiener filter

mock signal : four-armed spiral
signal model : log-normal field (d = Re® +n )
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Example 2 : Critical Wiener filter

mock signal : four-armed spiral
signal model : log-normal field (d = Re® +n )

0910(data(b=0) H reconstructed signal I
| | o]
log10(rec_data(b=0)) 0
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data
step 1
R
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results obtained with the NIFTy package



Example 2 : Critical Wiener filter

mock signal : four-armed spiral
signal model : log-normal field (d = Re® +n )
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results obtained with the NIFTy package



Example 2 : Critical Wiener filter

mock signal : four-armed spiral
signal model : log-normal field (d = Re® +n )
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results obtained with the NIFTy package



Example 2 : Critical Wiener filter

mock signal : four-armed spiral
signal model : log-normal field (d = Re® +n
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Example 2 : Critical Wiener filter

mock signal : four-armed spiral
signal model : log-normal field (d = Re® +n
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results obtained with the NIFTy package



Conclusions

» We have illustrated how determining the density of interstellar
hydrogen will help us in shedding light on several issues related to
both cosmic-ray physics and dark matter searches

» We have seen how the methods that have been devised so far to
determine the gas density from observations suffer from several
drawbacks.

» We have seen how information field theory works promisingly in
reconstructing mock signals.



Outlook

We are now using our approach with the actual CO-line emission data.
We plan to do several things; as an example:

o we will study how the reconstructed signal depends on the rotation
curve we assume (in particular if we consider non-circular motion in
the inner Galaxy)

o we will study how the priors that we impose on the power spectrum
of the signal affect the reconstruction
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We plan to do several things; as an example:

o we will study how the reconstructed signal depends on the rotation
curve we assume (in particular if we consider non-circular motion in
the inner Galaxy)

o we will study how the priors that we impose on the power spectrum
of the signal affect the reconstruction
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Information field theory

which signal configuration is the right answer to the inference problem?

e Maximum a Posteriori (MAP) solution:

- 0H(d, s)

0S s—m (MAP)

(easy to calculate, but takes into account only local information at the
maximum).

e Posterior mean ‘
m = <8>7>(3|d) — / DSSP(S‘d)

I

(it is usually a better choice, as it is influenced by the whole posterior
distribution, but calculating it is typically much more difficult)




