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Outline

1. At hadron colliders, there are many interesting final states to
observe. Among these, the production of colour-neutral final states
has gotten much attention.

2. There are many methods to compute cross sections at NLO and
NNLO. However, at N3LO the implementation of these methods is
involved.

3. | shall present the methods to compute the soft function for top pair
production at NNLO which have already been computed and report
on progress that has been made to apply them to the computation
of beam functions at N3LO.

4. This is the last ingredient to implement the g slicing method at
N3LO.
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The g7t slicing method

[Catani, Grazzini ‘07, ‘15]
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Factorization
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where F = H,Z, W,ZZ, WW, tt,...
If not colourless the final state must be at least massive

g°> ~ g> > Aqcp  collinear factorization
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g°> > q% > Aqcp  small-g7 factorization
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All those functions

To get the cross section at N"LO, we need to know all those functions

at N"LO
doﬁm"o
dd
B - beam function
H - hard function
S - soft function

Today,
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_ Bl mLO ® BszLO ® HNmLO ® SN'"LO

radiation collinear to the beam,
process-independent, known up to NNLO

virtual corrections, process-dependent

soft, real radiation, process-dependent

| will focus on S and B.
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Renormalization

[ T T ) separately divergent
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Soft Collinear Effective Theory (SCET)

SCET ~ QCD‘

IR limit
Hard degrees of freedom are integrated out into Wilson coefficients,
which are then used to adjust new couplings of the (effective) theory.

QCD fields written as sums of collinear, anti-collinear and soft
components:

P(x) = be(x) + de(x) + ¢s(x)
The new fields decouple in the Lagrangian
Lscetr = Lc+ Lz + Ls

The separation of fields in the Lagrangian into collinear, anti-collinear
and soft sectors, facilitates proofs of factorization theorems
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Small-g7 factorization in SCET

Gluons’ momenta in light-cone coordinates

K'= (kT k7 k) where kT =KL k3
Expansion parameter
= 225 <1
Phase space regions
K
collinear K~ (1,020 Q% By

anti-collinear k' ~ (A2, 1,A\)Q*> B,

hard Kt~ (1,1,1) @2 H

Collinear
k2 = 2 Q?
k+

soft Kt~ (A A N) Q2 S
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Rapidity divergences and analytic regulator

QCD Q P
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collinear soft anti-collinear Collinear
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k+

Modification of the measure [Becher, Bell '12]

/ddk6+(k2) —>/ddk <k”+>a5+(k2)

The regulator is necessary at intermediate steps of the calculation.

Rapidity divergences do not appear in QCD, hence, the complete SCET
result has to stay finite in the limit « — 0.
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NNLO soft function
for top pair production

[Angeles-Martinez, Czakon, Sapeta, ‘18]

[Catani, Devoto, Grazzini, Kallweit, Mazzitelli, ‘19]
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Motivation

1. This calculation has been carried out in the small gr-factorization
framework and we are using it as a basis to carry out computations
for beam functions.

2. In general, the IR divergences appearing are overlapping. To
seperate them, sector decomposition is employed.

3. After this decomposition into sectors, the poles can be made explicit
in terms of a Laurent series in € where the coefficients can be
computed fully numerically.
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Soft function

Represents corrections coming from exchanges of real, soft gluons, whose
transverse momenta sum up to a fixed value g1

a(n) (v)

Sbare(qT Bh O(Z><m

q(m

t(v) q(n)

3
A

0 (qr — 132 ki) TL; 0 (K7)

() am

External momenta — Wilson Lines along n, 71, vs, v4 (Born kinematics)

Sir=2n%0 Si(,f) (82)" Si(fn) =24 Wg'}l{f}
1 1_ phase space

colour matrices .
integrals
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Soft function at NNLO

Three distinct groups of diagrams:
Bubble Single-cut

Double-cut
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Soft function at NNLO

Three distinct groups of diagrams:
Bubble Single-cut

DIFFERENTIAL DIRECT
EQUATIONS INTEGRATION

Double-cut

SECTOR DECOMPOSITION
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Numerical check (gg channel)
Coefficient of the soft function matrix as a function of velocity and at
scattering angle 7
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N3LO beam function

(work in progress)
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The beam function
Represents corrections coming from emissions of real, collinear gluons,

whose transverse momenta sum up to a fixed value g7 and whose
longitudinal component along p sums upto 1 —z

Bbare(qTa Z) X

n-n=2
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N3LO propagators

Possible denominators that may cause divergencies.

light-cone
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internal only
h-b
h-h
bk
h-b+h-h+h-h

internal+external
p-n-h
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The way to go

The beam function
Bbare Z qT ZIlv

can be calculated if each integral is represented as

d
Z / dxq xo dxs dx dX5...dX9Wj(x1,x2,...,Xg)-

1+ale 1+are _l4aze _l+4age
Jj € sectors X2 X3 X4

Wi(x1,X2,...,X9) has to be finite if x1,...,xs — 0.

Then we can use

1 ZOO —aje) Iog”(x,-)]
—_—_— X’ + .
Xi]"%ai6 EHS |: Xij +

=0
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N3LO propagators

The first problem: It is impossible to parameterize the momenta such
that all scalar products look simple simultaneously.

Example
B+ R
n=1[1,0,0,0,1]  A=[1,0,0,0,-1] h=|+%—F,0,0,0,-—T"
20 20
2+ 2 . 2. — 2
= [321337-7 0, Brsinx1, BT cosxi, 32/331
B+ Bo—R
h = 2_722+7 ht sin ¢y sin o, b1 COS Py sin ¢y, bt cos gy, ——2t

212 2h_
Folh=h  Abh=h A-h=lk_

Pobh_ 2k hr bt
b= 4 2122 ) = ar _ 2t
1h=5 2D ithTcosg; = ¢1=0& .

Brk- | Brh- L
bk = o h h1lT cos x1 cos ¢1 — h1lT Cos ¢y sin x1 sin ¢1

h— 3—
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Step 1: selector functions

7 triple collinear 12 double collinear
(h-h)(n-h)(n-h) (n-h)(A L) | (h-h)(n-k)
(h~h)(n-h)(n-@) (n-h)(ﬁ @) (b'@)(ﬁ'h)
(/2 . /3) (n . /2) (n /3) (n . /2) (ﬁ . /3) (/1 . /2) (n . /3)
(h-k)(A-h)(A- k) (A-h)(n-k) | (h-k)(A-h)
(h-B)(A-h)(A-h) (A-h)(n-hB) | (kh-K)(A-h)
(h-hK)(A-h)(A-hk) (A-h)(n- k) (h-h)(A-k)
(h-k)(h-B)(k-k)

dipa=(h-h)(A-h)(n-h),
S100= ! 1
122D D= XJ; du -+ T
S120 = = ! = ;
(I]_ ° /2) (n ° /2) (/1 o l2) (n ° /1)
1+ +
(h-h)(A-k) (h - k)
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Step 2: sector decomposition

Let's focus on the sector (h - h)(A-h)(A- k) . All other singularities
are suppressed by the corresponding selector functions.

In this sector, divergencies can be generated by the following

propagators:

n-

h-
n-h+n-h
n-h+n-h

h-bh+h-Eb+h-h

T
b

-k

b
b
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— /1,
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Poho Bk
T — hrl
— 2 + 2 17hT Cos ¢

— h_+bh_
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Step 2: sector decomposition

The nonlinear transformation

= 1 (hrh- = h_hr)*(1 4 cos¢r)
2 /12-,—/22_ + /12_122-,— —2h_bh_hthtcos¢;
turns
b 2
/ . / — 1T 2T _ / /
T + o 17hT COs @1
into

(Frb_ — B Br)

bl =
YR o b (BB 4+ B —2h b hrhr(1—20))
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Step 2: sector decomposition

ho = hth-
ht h_

b

he+h_ — /1,(1 == 127) h-+h — /2,(1 = /1,)
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Step 2: sector decomposition

ho = hth-
ht h_

2—

/2T>7\>/2T /2T>7\>/2T
h_ < h_ > = ho < ho > 2
bh_ < 5 bh_ > ho < % h_ > 5

» This algorithm factorizes all overlapping singularities
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NNLO beam function

Known analytically [Gehrmann, Liibbert, Yang '12, '14].

We checked that our method reproduces that result

80
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S
N
< 40f
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Q
20 Cr N¢ Te
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Status

The integrals take now the desired form

d d d
7 Z / X1 dxp X3 X dxs - - - dxo Wj(x1, %2, ..., Xg)

1+21€ 1+326 1+336 X1+a4e
J € sectors 3 4

We checked that, for the case of the g — ggqgg contribution to the beam

function, the weights W; are finite in the limit of x; — 0, as required

We are now ready to evaluate the integrals
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