NNLL Resummation for Transverse Thrust

Jan Piclum

in collaboration with Thomas Becher and Xavier Garcia i Tormo

PRD 93 (2016) 054038 [079905(E)], arXiv:1512.00022

- measure geometrical properties of energy flow ٩
- mostly used in lepton collisions
- precise extraction of α_s

- measure geometrical properties of energy flow
- mostly used in lepton collisions
- precise extraction of α_s
- definitions for hadron collision exists as well
- use only momenta transverse to beam
- useful to study jet substructure and underlying event
- NLL resummation is available in automated framework CAESAR

[Banfi, Salam, Zanderighi]

Transverse Thrust

defined in analogy to thrust:

$$T_{\perp} = \max_{\vec{n}_{\perp}} \frac{\sum |\vec{p}_{m\perp} \cdot \vec{n}_{\perp}|}{\sum |\vec{p}_{m\perp}|} \qquad \tau_{\perp} = 1 - T_{\perp}$$

Goal: resum singular terms in dijet limit $\tau_\perp \to 0$ at NNLL using SCET

Transverse Thrust

defined in analogy to thrust:

$$T_{\perp} = \max_{\vec{n}_{\perp}} \frac{\sum |\vec{p}_{m\perp} \cdot \vec{n}_{\perp}|}{\sum |\vec{p}_{m\perp}|} \qquad \tau_{\perp} = 1 - T_{\perp}$$

Goal: resum singular terms in dijet limit $\tau_{\perp} \rightarrow 0$ at NNLL using SCET

 $\tau_{\perp} \to 0$ limit also contains non-singular configurations with all particles in the same plane

 \rightsquigarrow larger corrections when matching to fixed order

Transverse Thrust at LHC

Jan Piclum (University of Siegen)

Transverse Thrust at NNLL

Siegen, 23 Jan 2020 4 / 14

[CMS]

Momentum Modes

consider transverse thrust in $pp \rightarrow 2jets$:

Factorisation Formula

partonic cross section $ab \rightarrow ij$ for recoil-free transverse event shape:

$$\tilde{t}(\kappa) \sim H_{IJ}^{ab \to ij} \left(\frac{Q^2}{\kappa^2}\right)^{-F^{ab \to ij}(\kappa)} \tilde{S}_{JI}^{ab \to ij}(\kappa) \tilde{B}_a(\kappa) \tilde{B}_b(\kappa) \tilde{J}_i(\kappa) \tilde{J}_j(\kappa)$$

Factorisation Formula

partonic cross section $ab \rightarrow ij$ for recoil-free transverse event shape:

$$\tilde{t}(\kappa) \sim H_{IJ}^{ab \to ij} \left(\frac{Q^2}{\kappa^2}\right)^{-F^{ab \to ij}(\kappa)} \tilde{S}_{JI}^{ab \to ij}(\kappa) \tilde{B}_a(\kappa) \tilde{B}_b(\kappa) \tilde{J}_i(\kappa) \tilde{J}_j(\kappa)$$

(for transverse thrust: $F^{ab \rightarrow ij} = F^{ab}$) needed for NNLL:

- 1-loop hard, soft, jet, and beam function
- 3-loop cusp anomalous dimension
- 2-loop anomalous dimensions
- 2-loop anomaly exponent

$$\tilde{t}(\kappa) \sim H_{IJ}^{ab \to ij} \left(\frac{Q^2}{\kappa^2}\right)^{-F^{ab \to ij}(\kappa)} \tilde{S}_{JI}^{ab \to ij}(\kappa) \tilde{B}_a(\kappa) \tilde{B}_b(\kappa) \tilde{J}_i(\kappa) \tilde{J}_j(\kappa)$$

Factorisation requires:

$$F^{ab \to ij} = F^{ab} + F^{ij} = \frac{C_a + C_b}{2} F_{\perp} + \frac{C_i + C_j}{2} F'_{\perp}$$

RG invariance requires:

$$\gamma_{H^{ab} \to ij} + \gamma_{S^{ab} \to ij} + \gamma_{B_a} + \gamma_{B_b} + \gamma_{J_i} + \gamma_{J_j} = 0$$

$$\tilde{t}(\kappa) \sim H_{IJ}^{ab \to ij} \left(\frac{Q^2}{\kappa^2}\right)^{-F^{ab \to ij}(\kappa)} \tilde{S}_{JI}^{ab \to ij}(\kappa) \tilde{B}_a(\kappa) \tilde{B}_b(\kappa) \tilde{J}_i(\kappa) \tilde{J}_j(\kappa)$$

Factorisation requires:

$$F^{ab \to ij} = F^{ab} + F^{ij} = \frac{C_a + C_b}{2} F_{\perp} + \frac{C_i + C_j}{2} F'_{\perp}$$

RG invariance requires:

$$\begin{array}{rcl} ab \rightarrow ij: & \gamma_{H^{ab}\rightarrow ij} + \gamma_{S^{ab}\rightarrow ij} + \gamma_{B_a} + \gamma_{B_b} + \gamma_{J_i} + \gamma_{J_j} &= & 0 \\ e^+e^- \rightarrow ij: & \gamma_{H^{ij}} &+ \gamma_{S^{ij}} &+ \gamma_{J_i} + \gamma_{J_j} &= & 0 \end{array}$$

 $ab \to e^+e^-: \quad \gamma_{H^{ab}} \quad + \gamma_{S^{ab}} \quad + \gamma_{B_a} + \gamma_{B_b} \qquad = 0$

Anomalous Dimension of Beam Function

consider $q\bar{q} \rightarrow e^+e^-$:

$$\gamma_{H^{q\bar{q}}} = -\gamma_{S^{q\bar{q}}} - \gamma_{B_q} - \gamma_{B_{\bar{q}}}$$

• hard anomalous dimension is known: $\gamma_{H^{q\bar{q}}} = 2\gamma^q$

• soft function is scaleless: $\gamma_{S^{q\bar{q}}} = 0$

$$\rightsquigarrow \gamma_{B_q} = \gamma^q$$

consider $gg \to H \to \gamma\gamma$ to obtain $\gamma_{B_q} = \gamma^g$

Anomalous Dimensions of Soft and Jet Function

consider $e^+e^- \rightarrow q\bar{q}$ and $e^+e^- \rightarrow gg$:

$$\gamma_{H^{ij}} = -\gamma_{S^{ij}} - \gamma_{J_i} - \gamma_{J_j}$$

for $F^{ij} = 0$:

•
$$\gamma_{H^{q\bar{q}}} = 2\gamma^{q}$$
, $\gamma_{H^{gg}} = 2\gamma^{g}$

•
$$\rightarrow \gamma_{J_q} = -\gamma^q - \frac{1}{2}\gamma_{S^{q\bar{q}}}, \ \gamma_{J_g} = -\gamma^g - \frac{1}{2}\gamma_{S^{gg}}$$

• extract $\gamma_{Sq\bar{q}}$ from fixed order result, e.g. EVENT2 [Catani, Seymour]

- $\gamma_{S^{gg}}$ is related to $\gamma_{S^{q\bar{q}}}$ by Casimir scaling (at two loops)
- $\gamma_{S^{ab \to ij}}$ for other channels is determined by RG invariance

for $F^{ij} \neq 0$ soft and jet anomalous dimension are not needed separately

Anomalous Dimensions of Soft and Jet Function

consider $e^+e^- \rightarrow q\bar{q}$ and $e^+e^- \rightarrow gg$:

$$\gamma_{H^{ij}} = -\gamma_{S^{ij}} - \gamma_{J_i} - \gamma_{J_j}$$

for $F^{ij} = 0$:

•
$$\gamma_{H^{q\bar{q}}} = 2\gamma^{q}$$
, $\gamma_{H^{gg}} = 2\gamma^{g}$

•
$$\rightsquigarrow \gamma_{J_q} = -\gamma^q - \frac{1}{2}\gamma_{S^{q\bar{q}}}, \ \gamma_{J_g} = -\gamma^g - \frac{1}{2}\gamma_{S^{gg}}$$

- compute $\gamma_{S^{q\bar{q}}}$ with SoftSERVE, see talk by Rudi Rahn
- $\gamma_{S^{gg}}$ is related to $\gamma_{S^{q\bar{q}}}$ by Casimir scaling (at two loops)
- $\gamma_{S^{ab \to ij}}$ for other channels is determined by RG invariance

for $F^{ij} \neq 0$ soft and jet anomalous dimension are not needed separately

Anomaly Coefficient

- define observable with known anomaly that
 - agrees with τ_{\perp} for one emission
 - differs from au_{\perp} for two or more emissions
- compute difference

Anomaly Coefficient

- define observable with known anomaly that
 - agrees with τ_{\perp} for one emission
 - differs from τ_{\perp} for two or more emissions
- compute difference

 τ_{\perp} in $q\bar{q} \rightarrow e^+e^-$:

$$\begin{aligned} \mathcal{T}_{\perp} &= \sum \left| \vec{p}_{m\perp} \right| - \sum \left| \vec{p}_{m\perp} \cdot \vec{n}_{\perp} \right| \\ \mathcal{S}_{\perp} &= \left| \sum \vec{p}_{m\perp} \right| - \left| \sum \vec{p}_{m\perp} \cdot \vec{n}_{\perp} \right| \end{aligned}$$

• compute S_{\perp} from known Drell-Yan results [Becher, Neubert] • $d_2^{\text{DY}} - d_2^{\perp}$ is determined by rapidity divergences of soft function

Anomaly Coefficient

$$F_{\perp}^{q\bar{q}}(L_{\perp}) = \frac{\alpha_s}{4\pi} C_F \Gamma_0 L_{\perp} + \left(\frac{\alpha_s}{4\pi}\right)^2 C_F \left(\Gamma_0 \beta_0 \frac{L_{\perp}^2}{2} + \Gamma_1 L_{\perp} + d_2^{\perp}\right)$$

from numerical evaluation of tree-level two-emission soft amplitude:

$$d_2^{\perp} = (208.0 \pm 0.1) C_A + (-37.191 \pm 0.006) T_F n_f$$

- agrees with SoftSERVE [Bell, Rahn, Talbert]
- agrees with DYNNLO [Grazzini]

Jan Piclum (University of Siegen)

Transverse Thrust at NNLL

Results: Transverse vs. Regular Thrust

NLL NNLL $\mathcal{O}(\alpha_s)$ fixed order $\mathcal{O}(\alpha_s^2)$ fixed order

$$\mu_{
m soft} = 4 M_Z au_\perp$$
, $\mu_{
m jet} = 2 M_Z \sqrt{ au_\perp}$

Results: Transverse Thrust

$$\label{eq:model} \begin{split} \mu_{\rm soft} &= 4 M_Z \tau_{\perp} \text{, } \mu_{\rm jet} = 2 M_Z \sqrt{\tau_{\perp}} \text{, } \mu_{\rm beam} = 2 e^{4G/\pi} M_Z \tau_{\perp} \\ \\ \text{MSTW 2008 NNLO PDFs, } \alpha_S(M_Z) &= 0.11707 \end{split}$$

- we determined all ingredients for NNLL resummation of transverse thrust by exploiting universality properties of factorised cross section
- we find large corrections at NNLL
- \bullet transverse thrust in $pp \to e^+e^-$ could be used as a probe of underlying event
- the method can be applied to other observables and can be extended to an automated resummation framework

- we determined all ingredients for NNLL resummation of transverse thrust by exploiting universality properties of factorised cross section
- we find large corrections at NNLL
- \bullet transverse thrust in $pp \to e^+e^-$ could be used as a probe of underlying event
- the method can be applied to other observables and can be extended to an automated resummation framework

still missing:

- full implementation for hadronic processes
- Glauber gluons?