

European Research Council Established by the European Commission

Cloud Physics: The Role of Clouds in Climate Change

Prof. Dr. Corinna Hoose Institute of Meteorology and Climate Research, KIT

Clouds

Climate Change

. . .

. . .

Cloud changes under climate warming

Simulated changes with observational evidence.

Fig. 7.11 of the IPCC AR5, Part 1.

Observed cloud changes

Figure 3 | Zonal mean change in observed and simulated cloud amount during the period 1983–2009 in seven pressure intervals. a, ISCCP climatological cloud amount. b, Trend in ISCCP cloud amount 1983–2009.

Norris, J., Allen, R., Evan, A. et al. Evidence for climate change in the satellite cloud record. Nature 536, 72–75 (2016) doi:10.1038/nature18273

Observed cloud changes

Norris, J., Allen, R., Evan, A. et al. Evidence for climate change in the satellite cloud record. Nature 536, 72–75 (2016) doi:10.1038/nature18273

Figure 3 | Zonal mean change in observed and simulated cloud amount during the period 1983–2009 in seven pressure intervals. a, ISCCP climatological cloud amount. b, Trend in ISCCP cloud amount 1983–2009.

FAT (Fixed anvil temperature) hypothesis (Hartmann & Larson, 2002; Kuang and Hartmann, 2007): anvil clouds occur where convective detrainment is maximum, and this is controlled by the vertical gradient of clear-sky radiative cooling (water vapour emissivity).

Cloud radiative effect = $F_{net,SW,TOA}^{with cloud}$ - $F_{net,SW,TOA}^{without cloud}$ + $F_{net,LW,TOA}^{with cloud}$ - $F_{net,LW,TOA}^{without cloud}$

SW: shortwave, LW: longwave, TOA: top of the atmosphere; sign convention: positive downward

. . .

Low cloud reduction:

NASA, MODIS satellite

Schneider, T., Kaul, C.M. & Pressel, K.G. Possible climate transitions from breakup of stratocumulus decks under greenhouse warming. Nat. Geosci. 12, 163–167 (2019) doi:10.1038/s41561-019-0310-1

Low cloud reduction: tipping point?

Schneider, T., Kaul, C.M. & Pressel, K.G. Possible climate transitions from breakup of stratocumulus decks under greenhouse warming. Nat. Geosci. 12, 163–167 (2019) doi:10.1038/s41561-019-0310-1

. . .

Cloud phase feedback

Cloud phase feedback

17 Corinna Hoose The Role of Clouds in Climate Change

Institute of Meteorology and Climate Research Troposphere Research Department

Troposphere Research Department

Glaciation: liquid to ice conversion

Why does it matter:

- Latent heat release
- Optical properties change
- Particle size changes -> sedimentation velocity, lifetime

Simulation setup

Semi-idealized COSMO simulations
Δx=110m, 600x600 gridpoints
convection triggered by solar heating in an orographically structured terrain
2-moment, 6-category microphysics
(Seifert & Beheng, 2006)

In-cloud phase distribution

Fingerprints of ice formation processes

Fingerprints of ice formation processes

Fingerprints of secondary ice formation

Institute of Meteorology and Climate Research Troposphere Research Department

Fingerprints of primary ice formation

Institute of Meteorology and Climate Research Troposphere Research Department

Cloud phase feedback and climate sensitivity

Depends on the efficiency of different **ice formation processes**, which is still highly uncertain!

. . .

Cloud changes due to aerosols

IPCC AR3, 2007

Cloud albedo and cloud lifetime effects: ship tracks

 N_{sc} : additional CCN by ship emissions R_{zb} : rain rate at cloud base (contours: 1, 10, 20 mm/day)

Wang & Feingold, 2009

Cloud susceptibility

Oreopoulos and Platnick, 2008

Contrails

Fig.: wikipedia

Institute of Meteorology and Climate Research Troposphere Research Department

IPCC AR5: radiative forcings

Summary

