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Challenges for the future

The next generation of detectors are extremely challenging: HEP, astrophysics, photon science, etc.

KIT

Karlsruher Institut fur Technologie

Particle physics

Unprecedent luminosity
operations,

4D detectors: excellent spatial
and time resolution

processed in < 4 us with high efficiency

HL-CMS: Unprecedented data rate of up to 50 Tb/s to be

Photon Science
Terapixel per second
imaging:

* 100 million pixel,
e MHz- frame rates

*  High dynamic range

Astroparticle physics

Cryogenic detectors of unique
energy resolution for dark
matter searches and neutrino
physics

CTA, IceCube-Gen2, etc.

Accelerators and beam
physics

Complex dynamics on short
time scale,

Multi-spectral THz detectors
for beam diagnostics, for
plasma accelerators

2 7t KSETA Plenary Workshop 2020

Michele Caselle

Institute for Data Processing and Electronics (IPE)




FPGAs in Detector Instrumentation - Outlook ﬂ(IT

Karlsruher Institut far Technologie

‘ Motivations - How to cope with the data deluge from the next generation of detectors?

Novel heterogenous programmable devices — What is the evolution of Field
Programmable Gate Array (FPGA) devices?

‘ Machine learning (ML) and artificial intelligence - Will enable us to process

the data deluge in real-time?

‘ Al on FPGA - How develop a fast ML inference on FPGA?

Applications: fast track-reconstruction based on ML, control of the beam dynamics in
complex synchrotron machines e.g. autonomous accelerator?

3 7t KSETA Plenary Workshop 2020 Michele Caselle Institute for Data Processing and Electronics (IPE)



Field Programmable Gate Arrays (FPGA) ﬂ("'

Karlsruher Institut fur Technologie

® The first commercially viable Field Programmable Gate Array (FPGA), named XC2064, has been invented in 1985
by Ross Freeman and Bernard Vonderschmitt, the Xilinx co-founders.

® A FPGA is a semiconductor Integrated Circuit (IC) device on which the function can be defined after manufacturing
(“in the field”) using software-like languages (ex: VHDL, Verilog). FPGAs can be reconfigured at any times.

Configurable Logic Blocks (CLBs)

FPGA architecture \

’mm

COUT1

COUTO

Switch Matrix

n Cino Cint

u _1 Programming an FPGA means configuring:
@ |[OB - FPGA Input/ output

[ 108 ]

I B Boolean function in the slides

Array with millions of elements @ The interconnections between slides and I0B
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Field Programmable Gate Arrays (FPGA)

® A Look-Up Table (LUT) can implement any arbitrary Boolean function of its inputs and can be

cascaded to other LUTs to perform more complex functions

5

Switch Matrix

CLB

- S

Cino Cini

How works the look-up table:

Can be programmed

COUT1

A5
Ad
A3
A2
A1

A6

Rst

Clk

KIT
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Flip-Flop (memory)

LUT (Look-Up Table) MUX /
v
n  5-LUT
. o OUJ 1
2 Y v
N FF OUIZ
. A Example
4 Fequired function
: B Truth table
: ) D—y

Slice

LUT contains memory cells to implement any arbitrary “small” logic function

Each cell holds “0” or “1”

Programmed with outputs of Truth Table
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ogrammable Gate Arrays (FPGA) QAT

Karlsruher Institut far Technologie

FPGA is divided in regions

52 available Input Output
Blocks (I0OB) @ 2 Gb/s
(512 1/0 in total)

Multi-gigabit transceivers 1/0 @
32 Gb/s (bandwidth = 1.2 Tb/s)

Zynq ZU11EG Ultrascale+ (Xilinx)

6 7t KSETA Plenary Workshop 2020 Michele Caselle Institute for Data Processing and Electronics (IPE)



Field Programmable Gate Arrays (FPGA)

Zynq ZU11EG Ultrascale+ (Xilinx)

7 7t KSETA Plenary Workshop 2020

DSP48E2 Slice

Michele Caselle

KIT

Karlsruher Institut far Technologie

Block RAM 21 Mbit + 22 Mbit
(Ultra RAM)

DSP -Digital Signal Processing (2928

units)

Institute for Data Processing and Electronics (IPE)



Field Programmable Gate Arrays (FPGA) UT

Karlsruher Institut far Technologie
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CLBs - Configurable Logic Blocks (> 1 Million of CLBs)

Zynq ZU11EG Ultrascale+ (Xilinx)
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Field Programmable Gate Arrays (FPGA) QAT

Karlsruher Institut far Technologie

b B
I
g

CLBs - Configurable Logic Blocks (> 1 Million of CLBs)
Sea of Programmable Logic and Routing resourses
Zynq ZUT1EG Ultrascale+ (Xilinx) Latency & bandwidth comparable to ASICs
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AKIT
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From FPGA ...

... to Adaptive Compute Acceleration Platform

New generation of heterogenous
programmable platform

10 7t KSETA Plenary Workshop 2020 Michele Caselle Institute for Data Processing and Electronics (IPE)




16 nm TSMC (FinFET) MPSoC (Zynq US+)

1.5 GHz Quad-core ARM processor +
FPGA @ 890 MHz F\,sx (all register used)

VERSAL architecture

FPGA based on +
Multi-core processors +

Radio frequency front-end (analog) +
Artificial intelligent & complex signal

20 nm Tsmc (FinFeT)  MPSoC (Zynq US)
1 GHz Dual-core ARM processor +

FPGA @ 740 MHz F,5x (all register used)
processing (hard-core) Tod ay
7 nm TSMC (FinFET)
ACAP
90nmcMOS  SoC (Virtex-4)
FPGA @ 300 MHz Fy;ax *+
450 MHz PowerPC processor
2018
Invented (XC2064) 2016
16 nm TSMC (FinFET)
2 2014 RFsoC

005 RFSoC (Zyng US+)

1985 MPSoC 1.5 GHz Quad-core ARM processor +

EPGA SoC 890 MHz F,,5x (all register used) +

Radio frequency front-end (analog)

Device Category



Heterogeneous: ZYNQ MPSoC technology \“(IT

Karlsruher Institut fur Technologie

@ Heterogeneous platform of the Zynq System-on-Chip (SoC) integrates, in a monolithic device, FPGA

resources with a back-end software running on a hard-core ARM-based processor.

Embedded Graphics
Processing Unit (GPUs)

Graphics Processing Unit High-Speed
ARM Mali™-400 MP2 C e

DisplayPort v1.2a .
;ﬂa;'" Standard peripherals hard £
i IP-core

Memory Management Unit PCle® 10/20
——
64KB L2 Cache | ESOTR

General Connectivity
GigE

Functons e i.e. Linux OS on device

o]
oA |
| |
Timers, Quad SPI NOR E i
Jorress ||| = | FMulti-Processor System-on-Chip (PS)
[ soemic |

Quad-core ARM processor Processing System
Application Processing Unit

[ neonw |

DDR4/3/3L,
LPDDR43
32/84 bit wECC

| Floating Point Unit |

Dual-core real-time
processor

256KB OCM
with ECC

Multi-Processor
System-on-Chip

Vecr Fioating
Pont Unit

System
Management

Power
Management

Functional
Safety

ARM
Cortex™-R5

Muttichannel DMA

Memory Protection
Unit

128KB 32K8 |-Cache || 32K8 D-Cache
TCM wiECC WECC WIECC

W,

Programmable logic (PL)

Programmable Logic _
System Monitor
Storage & Signal Processing ‘ . \ .
| GeneraPuposelo | High-Speed Connectivity ‘ \ FPGA & High-speed
N Video Codt .
| vew | e interfaces based on TSMC
16 FinFET

FPGA

System-on-Chip (SoC) workshop — CERN , 12-14 June 2019
httpS ‘//indico.cern.ch/event/799275/ Ref. https://www.xilinx.com/support/documentation/selection-guides/zynqg-ultrascale-
plus-product-selection-guide.pdf
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Heterogeneous: ZYNQ RFSoC technology *‘(IT

Karlsruher Institut fir Technologie

® The bandwidth bottleneck of previous ZYNQ MPSoC was the bandwidth and complexity of the

JESD204B standard communication for fast ADC/DAC
Standard peripherals

hard |P-core

Processing System
ARM. + Quad-Core A53 (64-bit)
Cortex . pyal.Core RS (32-bit

Monolithically Integrated

Hardened Engines ] . ey
 PCle Gen3 & Gend T il
+ 100G Cores

.‘.i Programmable Logic
8%o. * 16nm FinFET

P

8% . UltraScale+ FPGA Fabric

ad-Core Wemoy
= Sun-Sys
Cortex™-AS3 -

Dual-Core
ARN®

@ << 33G Transceivers DSP-Intensive
S + 33Gbls ol LOA\© R e J%\é)d « 4,272 DSP slices
- 28G Backplane Capable Ptos‘z‘“‘“a ) W A - 7,612 GMACs

\ pm@w“
AR\ T‘a“scewe‘s —

OGS

. Digital-to-Analog
Im_— Converters
Up to 6.544 GSPS

Up to 4.096 GSPS Soft Decision Forward

j ﬂ Analog-to-Digital
-@ Converters

Up to #16 fast ADCs (12 bits) | (b regomomor. Up to #16 fast DACs (14 bits)
- Analog layers

Ref. https://www.xilinx.com/support/documentation/selection-guides/zynq-usp-rfsoc-product-selection-guide.pdf
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Versal — ACAP (Overview)

KIT

Karlsruher Institut fur Technologie

® New Xilinx architecture Versal - ACAP (Adaptive Compute Acceleration Platform) develop in TSMC 7nm

FinFET technology, key features:

® More heterogeneous: Scalar processors +
FPGA + HBM + RF + Al and DSP engines

®  Network-on-Chip: is a full blocking crossbar
between memories, PL, processors, Al engines.
It is built using stacked silicon interconnect (SSI)

technology

@ Adaptable engine (FPGA): memory

elements tightly coupled with programmable logic

® Al engines: two-dimensional array of Al

engine optimized for real-time computation.

Scalar processors
+ real time

Programmable
Hardware (FPGA)

Dedicated Al engines
up to 130 TOPS @ INT8

I ouAL CORE
g A.x.ATi
CORTEX-AT

JCATY
-~ ARlatisson

Real time
processors

PCle Gen4 @ 16
lanes = 31 GB/s

Ref: https:.//www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
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Integrated
DDR4 memory

DSP hard IP
up to 10 TOPS @ INT8

Giga
Transceivers
data links

Multi-rate ETH MAC >
high-performance, low
latency Ethernet port:

1 x 100GE .. 4 x 10GE

Institute for Data Processing and Electronics (IPE)



Versal- ACAP architecture

A ° - A

Network on Chip

FPGA

110 Logic O

Network on Chi

DDR Controller DDR Controller DDR Controller

2 « XPIO -

/ /
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Matrix up to 400 Al engines (VC1902) &(IT

Data Memory up to 1 OO Mb (VC1 902) Karlsruher Institut fur Technologie

H - 4

/10

AXIS East
Instruction Load & Store
. Fetch & Address s2mm | s2mu | sawut
(16KB) Decode Generation = DMA | DMA | DMA
Unit Units =
123
" " : - =
Fixed Point Floating Point =
ﬁggcjr':" 5126 SIMD il 512b SIMD 2
Vector Unit Vector Unit
R eg?sct::'afl;iles Vector Register Files
Stall CD‘”;:'OI' Accumulator ®
Handler A Stream FIFO 2
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Next generation of data processing

16 12th Terascale Detector Workshop 2019 Michele Caselle Institute for Data Processing and Electronics (IPE)



Machine Learning

KIT

Karlsruher Institut fur Technologie

The generation of detectors will face a peak luminosity of 30 x 1034 cm-?/s with a pile-up 1000 and radiation levels
that are 1-2 orders of magnitude larger than those at the HL-LHC. Timing precision of 5 — 10 ps is required for
pile-up mitigation. The resulting data rates lie in the hundreds of TB/s.

CERN

7

. 'y S

. 1 o imacal LHC Machine Learning Working Group

e
"N

/, Ala " Summer School 2019
ARERRE ki
™™ https://indico.cern.ch/event/7689 1 Sl

Exploring neural networks to improve
b-jet tagging with the ALICE detector

lease register and send your abstract Overvi
via indicio at: 2019 Inter-experimental

the-art machine

Machine Learning Work

HigosH the HiggsML challenge

May to September 2014

* BERKELEY LAB Mome New  Fendeg s Resources v fvems QU

Machine Learning for
Science

n High Energy Physics meets Machine Learning

From Data to Scientific
Insights

(‘!’) Featured Pmdu:tlo'n(fb-r‘npe ¥

g 1.9 S

TrackML_Particle Tracking Challenge
T o g e b Pt < "% Fifth Machine Learning in High Energy Physics  Physice particlé“t?@g&'ugy?'

653 teams - 7 menths-ago
IML Workshop - CERN, April 9 2018

* DarkMachines:
Accelerating the Search for Dark
-Matter with Machine Learning

RWTH Aachen University SuperC

Big Data Science in Astroparticle Research - HAP Workshop

19-21 February 2018

Institute for Data Processing and Electronics (IPE)



What'’s the different between Artificial lintelligence, Machine
Learning, and Deep Learning?

While this is rather general, it includes things like planning, understanding language, recognizing objects and sounds, learning,
and problem solving

At its core, machine learning is simply a way of achieving Al

Deep learning is one of many approaches to machine
learning

Machine e -4
Learning ‘ D

FICIAL




Machine learning

Machine

Learning

Supervised Unsupervised Reinforcement

Labelled data No labelled data Interaction data

Task driven Data driven

Supervised Unsupervised

X -wnog/ &~

Input data Input data

Not trained
Algorithm trained by labeled data

19 7t KSETA Plenary Workshop 2020 Michele Caselle

Identify data

cluster

KIT
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Supervised: All data is labeled and the
algorithms learn to predict the output from
the input data.

Unsupervised: All data is unlabeled and the
algorithms learn to inherent structure from
the input data

Reinforcement: The learning algorithm is
trained not on present data but rather based
on a feedback system.

Learn from Mistakes
Reinforcement

Observations

Environment
Rewards

Actions

Institute for Data Processing and Electronics (IPE)



Supervised Machine Learning &‘(IT

Karlsruher Institut fir Technologie
Forward propagation

| Input
TRAINING V

label
"cat” — STEP 1 (Training): Process for machine to “learn”

\ . .

] E7 )« | "dog” and optimize model from data, off-line. Can be
‘/M:n ; performed on CPU/GPU rarely on FPGA
1 Partially re-program
< Error the weights
Back propagation
INFERENCE
STEP 2 (Inference): Using trained models to predict/estimate h’ H o
outcome from new observations in efficient deployments, on- o rewer
—

line. Can be performed on CPU/GPU and FPGA Forward propagation
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Relnforcement ML - Inverted pendulum application ﬂ("'

GOAL: to keep the pendulum in equilibrium
Action: to apply a “torque” or “rotational force” (T)
Reinforcement ML: which learns from the rewards / mistakes

ML running on FPGA

Inverted pendulum

Rewards time evolution learning/controlling

“high

. Control phase
-c -6
c Learning ph .
= earning phase Inverted pendulum in
x ., equilibrium

w{ low

0 10000 20000 30000 40000 50000 60000 70000 8

Number of steps

21
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Reinforcement

Observations

Environment
Rewards

Actions

Courtesy: Weijia Wang

A S

Simulation of inverted pendulum
Reinforcement ML on FPGA

Institute for Data Processing and Electronics (IPE)



Machine learning N(IT

Karlsruher Institut fur Technologie

I'Y'e?;fr‘]iirr‘lg Supervised: All data is /abelled and the
algorithms learn to predict the output from
| the input data.

1 Ll 1

Unsupervised: All data is unlabelled and
Supervised Unsupervised Reinforcement the algorithms learn to inherent structure
from the input data

Reinforcement: The learning algorithm is
trained not on present data but rather based
on a feedback system.

The idea behind a deep neural network is to
mimic the biological structure of the brain with
a similar structure with layers of artificial
neurons

Deep Learning

Deep learning is part of a broader family of machine learning methods based on artificial neural networks. Learning can
be supervised, unsupervised and reinforcements

22 7t KSETA Plenary Workshop 2020 Michele Caselle Institute for Data Processing and Electronics (IPE)



Deep Neural Network A“(IT
/ Nodes or neurons \

Net input
function

One or more
Outputs

input layer hidden layer 1 hidden layer 2 output layer

Nodes or neurons

weight

Weight matrix

Very simple example of network

23 7t KSETA Plenary Workshop 2020 Michele Caselle Institute for Data Processing and Electronics (IPE)



............... AT

1
: Convol ut|0n i Karlsruher Institut fur Technologie
1

____________________________________________________________

1|0 -1
Filter 3x3

Output 4x4

Result of the element-wise
product and sum of the
filter matrix and the orginal
image

Juts a simple

weight w111 1 1 0 11 0 1 -1
0 0 0 1 1 0 41 0 1 -1
Filter 1 Filter 2 Filter 3 Filter 4
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Deep Neural Network (Convolution layer) . A\‘(IT

____________________________________________________________

“Convolution”

Filter 3x3

Output 4x4

Result of the element-wise
product and sum of the
filter matrix and the orginal
image

Filter 1 Filter 2 Filter 3 Filter 4
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Deep Neural Network (Convolution layer) ﬂ(“.
‘\ 4 Convolution neural network et sl
4

Outputs

)

Filter 1 Filter 2 Filter 3 Filter 4

.
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Deep Neural Network (Convolution layer) ﬂ(“‘

Karlsruher Institut fur Technologie

Features 2 Features 4

The convolution layer will extract
several “special features” from the
original picture

Features 1 Filter 1 Filter 2 Filter 3 Filter 4

Feature extraction
Features 3
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Deep Neural Network (Convolution layer) ﬂ("‘

Karlsruher Institut fur Technologie

All extracted features are combine in
the output layer in order to recognize
more complex structures

Features 2 Features 4

The convolution layer will extra a
“special feature” from the original
picture

Features 1 Filter 1 Filter 2 _~~ Filter 3 Filter 4

Features 3
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Deep Neural Network (Convolution layer)

Featue 1

Patterns of Local KBS«

‘ "
13
W | N7
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v
PN \\‘
ofe)
ANY4) 74
XK

b\
s

Hidden Layer 1
Input Layer

KIT
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Output Layer

Hidden Layer 2

® Adeep neural network consists of a hierarchy of layers, whereby each layer transforms the input data into more
abstract representations (e.g. edge -> nose -> face). The output layer combines those features to make predictions

29 7t KSETA Plenary Workshop 2020 Michele Caselle
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Deep Neural Network (Convolution layer) ﬂ(“‘
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Feature 1
0 7 SN =

IS »

Patterns of Local RESI=EEUDE ¥

)
IS
5

R
A
)0

—

Forward propagation
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How to implement a fast ML inference on
FPGA?
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High-Performance DNN on FPGA A\‘(IT

Karlsruher Institut fur Technologie

® DNN produces many parameters for the model, which increases the compute cost and requires high
memory bandwidth. There are two main ways to optimize a DNN application:

before pruning after pruning

A\l\/A
S Qi«' P / pruning
TR \\ synapses

Pruning: This is a form of DNN compression. It reduces the number of

- -

“synaptic” connections and “neurons” and so that the overall amount of data

is reduced. Typically, weights close to zero are removed.

pruning
neurons

What we lose in accuracy?
Comparison GPU (FP 32) vs FPGA (INT8)

. 2

Top-5 RV FIXED-16 [Vl Difference Quantization: To bring the neural network to a reasonable
Accuracy (INT16) (INT8) vs FP32 ) . . . :
size while also achieving high-performance accuracy. In this
VGG-16 86.6% 86.6% 86.4% (0.2%) L
method, the process of approximating a neural network that
0, 0, 0, 0,
GoogleNet 88.6% 88.5% 85.7% (2.9%) uses floating-point numbers (FTP32) by a neural network of
SqueezeNet | 81.4% 814% IASOkEN % low-bit width numbers (INT8) is performed.
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Machine learning on FPGA A\‘(IT

Karlsruher Institut fur Technologie

Nowadays, several High Level tools are available to generate “fast” ML inferences running on FPGA

® High Level Synthesis four Machine Learning, developed at CERN hIS 4 ml

33

®  Whatis his4ml > framework removes major barrier on hardware development of ML algorithms allowing
developers with little or no FPGA expertise to program the FPGA

Machine learning for Data Quality Monitoring (on-line), developed at CERN (HL-CMS)

NE

® Based on supervised learning - binary classification problem: good plot vs bad plot

Xilinx Deep Learning Processing Unit (DPU) which is a configurable computation engine dedicated to

convolutional neural networks v XILINX
’ V\/ITTIC

Custom frameworks: Snowflake: arXiv:1708.02579, DNNWeaver: http://act-lab.org/artifacts/dnnweaver/,
fpgaConvNet: http://cas.ee.ic.ac.uk/people/sv1310/ fpgaConvNet.html, CNNECST, many others ...

7t KSETA Plenary Workshop 2020 Michele Caselle Institute for Data Processing and Electronics (IPE)



his4dml — Workflow

KIT

Karlsruher Institut fir Technologie

® Very success framework, developed at CERN for CMS jet classification is now
integrated and distributed in the Xilinx Software Development Kit (XSDK)

Webpage: https://fastmachinelearning.org/hls4ml/

HIs4ml workflow

N *N

Tensor
DNN © Caffe?
. Keras

[+] I
— PYTHRCH
Target Data
User 1. Machine Learning
Input frameworks (GPU/CPU)
34 7t KSETA Plenary Workshop 2020

DNN

¥ol

Filter Weights

2. Pruning & Quantization.
Convert the trained/optimized
DNN model in a Vivado High
Level Synthesis Project

his 4 mi

Running on Linux

Trained Model

4. FPGA Firmware

Michele Caselle

his 4 ml i:

3. Netlist synthesis,
placement and routing

VIVADO'!

HLx Editions

Institute for Data Processing and Electronics (IPE)



hls4ml — reconstruction chain for jet QAT

®  GOAL: Machine Learning for low-level trigger system based on FPGA - fast jet substructure ferbrher et ecnologie

classification

CMS, oo s
&// ikl
e |

Monte Carlo data simulation

Neural network
implementation

Implementation on ZYNQ UltraScale+ XCZU9EG

35 7t KSETA Plenary Workshop 2020

3
1%
e e /

N\ - Particle

i)*, I d Classifier ammmdl  QCD

Rl

e 1
' -

Jets classifications:

Gluon (g)
Quark (q)
Boson (W)
Boson (Z)
Top quark (t)

FPGA vs GPU
Res_V FPGA Python Keras
prediction calculation (GPU)
Gluon (g) 0.118164 0.12993355
Quark (q) 0.639648 0.6487177
Boson (W) 0.118164 0.10633943
Boson (Z) 0.118164 0.10616959
top quark (t) 0.015625 0.00883975

Latency time:

Courtesy: Weijia Wang
® GPUs: of ~ tens us

> layers of fully connected ®m  FPGA: 16 clock cycles @ 200 MHz = 80 ns

layers neural network

Michele Caselle Institute for Data Processing and Electronics (IPE)



Xilinx Deep Learning Processing Unit (DPU)

36
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The Xilinx Deep Learning Processor Unit (DPU) is a configurable computation engine dedicated for convolutional neural

networks.

The DNNDK (Deep Neural Network Development Kit) is designed as an integrated framework, which aims to simplify
and accelerate deep learning application development and deployment on the Deep Learning Processor Unit (DPU).

High-Flex 2 multi-purpose PCle card
FPGA processor: Zyng XCZU11

7t KSETA Plenary Workshop 2020

Processor System

DNN training, optimization

DNNK Library & APIs

Configuration &
instructions

DATA IN
—)

FPGA

Michele Caselle

DATA OUT

DDR4 memory
On Zyng XCZU11 A

Processing System (PS) 'Y

CPU (DNNDK) Memory Controller

- ‘t ______________ $‘ _____ 1

]

— |

S5 | Fetcher ‘ | Data Mover |&; & ]

=35 m 3 1

S3 | Decoder ‘ - | On-Chip BRAM |5§ !

235 55| 1

£0 | Dispatcher‘ | BRAM Reader/Writer | oé © !

1

I

v |

|

g @ o TS PN g [} :
= i ) i ] o

25 55 | PE |l PE |- PE [ (25 || !

g H(C S I | | ) = & !

o L_____ '

1

1

1

_______ PE: processor engines  —______

Internal architecture
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Xilinx Deep Learning - Workflow

2 DNNDK (compression)

4 N

&9
o00®

b
<
2,
29 e

1
o /
Unoptimized, dense DNN
(FP64) and target data

CPU/GPU

4 N

Removing redundant connections

Quantization

K Reducing the precision j

-

3

Q_® Q ©

¥

e

J

Pruned & Quantized DNN
(INT8)

4

/

\_

Assembler

~

J

\{] ]
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DPU instruction

-

N

10001101010001000101
01001010010010101001
01011010101010101010
10101010101010100101
01011001100110010101
01010010101001010101
11001010101010010101
00100101010010100010

~

On Zynq XCZU11

® DNNDK library and APls must be installed on the SoC (PetaLinux)

® DPU must be implemented and integrated within the FPGA infrastructure, one or
more parallels DPUs could be instantiated which will work in parallel

37 7t KSETA Plenary Workshop 2020
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DPU on the FPGA 6
configured and ready to \
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Examples: Objects recognition/classification A‘(IT

Karlsruher Institut fir Technologie

® Neural network implemented resnet50

. : : Linux + drivers + Resnet 50 (DNN) = on-FPGA
® Xilinx Deep Learning Processor Unit (DPU) inux:+ drivers * Resnet 50 (DNTY).=.on

H JPIOJECES/ZEUT02NE] weijia@weijia: ~/projects/zcu102-.
KIT_shuttle. jpg Xian.jpg
root@hiflex2-peta-prj-0220:~/resnet50/image# rm KIT_shuttle*
root@hiflex2-peta-prj-0220:~/resnet50/image# ls

ipg cab.jpg cat.jpg words. txt
root@hiflex2-peta-prj-0220:~/resnet50/image# cd ..
root@hiflex2-peta-prj-0220:~/resnet50# ./resnet50

HERHBHRHBRARAUR AR RA R AR ARARAARBRARABRARBRABRARBRARN
L 2048 x1 Warning:
A/ The DPU in this TRD can only work 8 hours each time!
sexT) Please consult Sales for more details about this!
; T T

| Rz =maz0, 2)

x total image : 4

identity

image: cat.jpg

0] prob 0.379113 Egyptian cat,

1] prob 0.229943 tabby, tabby cat,

2] prob = 0.108618 e lynx, catamount,
0.
0.

3] prob 065880 Siamese cat, Siamese,
4] prob 024236 dishwasher, dish washer, dishwashing machine,

Load image: cab.jpg

[Top ©] prob = ©.5389 cab, hack, taxi, taxicab,

[Top 1] prob = 0.693655 trailer truck, tractor trailer, trucking rig, rig, articulated
, semi,

[Top 2] prob .093655 school bus,

[Top 3] prob 093655 police van, police wagon, paddy wagon, patrol wagon, wagon, bl
ria,

[Top 4] prob .034454 tow truck, tow car, wrecker,

Load image: Xian.jpg

prob = ©.716057 name = bell cote, bell cot, _

prob 0.159774 name palace,
prob 0.096908 name castle, .
prob 0.007955 name church, church building, NO h|gh-ﬂex
prob = 0.003758 name monastery, .

trained data

Load image: HiFlex2_new.jpg
[Top ©] prob = ©.638194 name hard disc, hard disk, fixed disk,

[Top 1] prob 0.182846 name oscilloscope, scope, cathode-ray oscilloscope, CRO,

High-Flex 2 multi-purpose PCle card [Top 2] 0.024745 name = tape player,

3] .02 name modem,
4 name = cassette,
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Examples: Advanced driver-assistance systems (ADAS) N(IT

Karlsruher Institut fir Technologie

® GOAL: Real-time recognition of cars, trucks, people, bikes, motorcycles, etc.
Video stored in the on-board
ga DDR4 memory and processed by
yolov3detection on FPGA

Video Analysis @Xilinx DPU

B o s

I |

IPE — ADAS Demo

rRsr s
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Advanced beam control (KARA) &‘(IT

Karlsruher Institut fir Technologie

Goal: to keep the coherent synchrotron radiation (CSR) THz intensity stable by fast feedback to RF System
®  Complex and nonlinear dynamics in longitudinal / transverse bunch profiles - described by a nonlocal nonlinear partial differential vilasov
fokker planck equation describing the time evolution of the probability distribution of a particle in synchrotron machine.

Intensity of THz radiation measured with KAPTURE at IR2

THz CSR source

Voltage (mV)
3
o_ 8
C %

THz

Detector

THz intensity is not stable period about ms

Synchrotron
accelerator
RF System

Mitigation via Dynamic RF Amplitude Modulation

THZ - KAPTU RE micro-structures in phase space 0.144

< 0142
2

¢ 0140
3

CSR signal

g
& 0138
<]

°

0.136

®  We would like to control the phase space of the
bunches by ML on FPGA

0.134

10 15 20

RF amplitude modulation
1.006

®  Action: to control the nonlinear dynamics of the phase
space of the beam by a modulation of the RF system

1.004

=)
S
S

((¢'30 920)/0d) dudiay1p AUSUP abieyd

®  RF System parameters are: RF Amplitude, phase and
frequency

%0) 4

Courtesy: Tobias Boltz w 5 -

time (Ts)
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Advanced beam control (KARA) - Reinforcement &‘(IT

Karlsruher Institut fur Technologie

® Complex and multi-dimensional control system working in real-time

® ML architecture candidate based on: reinforcement learning

Reinforcement Learning
Inference on FPGA GPU supervises the
FPGA actions

Synchrotron

accelerator [ -
THz > = PCle
AAAAAA t Detector ] KAPTURE

é

" Ldic “ =" Electrical signals
RF Driver

Learn from Mistakes
Reinforcement

~ Observations

Environment

Rewards

Actions
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Advanced beam control (KARA) - Reinforcement ﬂ(“‘

Karlsruher Institut fur Technologie

® Complex and multi-dimensional control system working in real-time

® ML architecture candidate based on: reinforcement learning

Reinforcement Learning
Inference on FPGA GPU supervise the FPGA
: actions

Synchrotron

accelerator THZ k- :
v Detector KAPTURE a

Agent inference on FPGA

FPGA PL
Rewards Critic

&

e el oo
G

RF System == f iy

Deep Deterministic Policy Gradients (DDPG) is one actor- —
critic based reinforcement learning algorithm for THz measurement
continuous control system. Feasible for: (KAPTURE)

®  hyper-parameters controls: amplitude, phase,
frequency of the RF cavity

Environment

®  When robustness is required 1

o Action to RF system
®  Working in progress ...
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PANDA - fast track-reconstruction AT

larget specorom Karlsfuher Institut fur Technologie

S1S100/300

“" Production of

/
?‘u“‘%‘ { ) — rare Isotopes
Ny /
it ‘
Super-FRS 4
Copper target
for Production
100.m of Antiprotons
Plasmaphysics
Atomphysics
FLAIR
FAIR at GSI

@ Existing Facili \ 2 ’ . .
B i Target fixed experiment

O Experiments

® Trigger-less readout system (no hardware trigger)

® GOAL: to explore ML for fast-track reconstruction of PANDA
® Forward Tracking System detector

® Barrel Tracking detector ,
9 Courtesy: Waleed Esmail (Forschungszentrum Jiilich) and Weijia Wang
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® STEP 1: Find “local” Track Segments by DNN (under
investigation by unsupervised ML)

44

Two-steps fast-track reconstruction

7t KSETA Plenary Workshop 2020

Michele Caselle

KIT

Karlsruher Institut fir Technologie

Monte Carlo event simulation (Forward Tracking System)

FS3+FS4

\IIII\IIIlII

FS3 Fs4
FS1  fs2
TRIRIRI

FS.+FS,

FS5 Fs6 102

I

| t FSo+FSG

wlll””llllll‘élllll

0 400 500 600

700 800
Z-Position [cm]
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Two-steps tracking reconstruction

® STEP 1: Find “local” Track Segments by CNN (under

45

investigation by unsupervised ML)

7t KSETA Plenary Workshop 2020

To find local track segments

Michele Caselle

KIT

Karlsruher Institut fur Technologie

event 1, 6 unique tracks (no mapping)

100 - -
FS3+FS4 .
75 - o
FS;+FS, ., == @
. NI R FS5+FS6
S asp et o
O
ed O_
X
-25 -
_50_
—75 -
300 350 400 450 500 550 600

Z [cm]
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Two-steps tracking reconstruction A\‘(IT

® By Unsupervised (K-means) and supervised (recurrent neural network) learning:

event 1, 6 unique tracks (no mapping)

100 -

FS3+FS4

® STEP 1: Create Track Segments by using K-means
clustering algorithm

Track

To find local track segments 50 -, ey ta” =
— FS5+FS6
E 25
o
® STEP 2: interpolate the track segments from the different x e
parts of the FTS to form a full track candidate, it is based 25 -
on a Recurrent Neural Network (RNN) ol STV -
Unfold 0 0 ' . ‘[cm]
- :> _,[ h, ]7[ hm ]7 - Recurrent neural networks have a memory that
I enables them to remember important events that
@ @ @ happened many time steps in the past.
Temporal dynamic behavior For: handwriting recognition or speech recognition.
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PANDA — A possible ML implementation

KIT

Karlsruher Institut fur Technologie

® Distributed Al architecture running on heterogenous FPGA-GPUs infrastructure, local track reconstruction on FPGA
and RNN on GPUs and integrated within the on-line event selection framework

largec specuaometcer

Courtesy: Waleed Esmail (Forschungszentrum Jiilich)
and Weijia Wang

FT1,FT2 | FT3,FT4 | FT5,FT6
Purity 99% 99% 99%
Efficiency | 96% 95% 96%

Local track segment “ONLY”

47 7t KSETA Plenary Workshop 2020

Local track segment

Full Track-reconstruction ]

STEP 2: Recurrent Neural
Network (RNN) on High
Performance Computing
Farm (green-cube)

STEP 1:
DNN on FPGA

The purity specifies which fraction of hits in one track come from the
correct particle.

The efficiency is defined as the ratio of the number of correctly
reconstructed tracks to all generated tracks.

Michele Caselle Institute for Data Processing and Electronics (IPE)



Impact A\‘(IT

Karlsruher Institut fur Technologie

® Motivations - Next generation of detectors will generate huge and complex
data volume (petabyte/sec), serious technological challenges = to push the
technology envelope (especially for trigger and data acquisition)

Machine learning is one prominent technique for data
processing (trigger, fast-track reconstruction), intelligent detector
configuration/calibrations, data quality monitor, etc.

32

® Novel programmable devices families with dedicated A/
01010 o padiil ~ oy engines opens new prospective for future detectors.

NN

® New generation of development tools for users
without knowledge of deep-learning or FPGA.

What’s about FPGA also for data analysis ?

... we are just at the beginning of a _
new disruptive technology ... Thank you for your attention

Michele Caselle Institute for Data Processing and Electronics (IPE)
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Backup slides
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FPGﬁ in detectors ﬂ(".

\ Back-end readout card for Alice Pixel
71 Detector (CERN 2008-2010)

Sis

[\ (

From /to
central trigger % S8 Altera Stratix EP1530 [V

Back-end electronics \ : N =l NG
; i i y e ‘u= RN
e To DAQ =, kol 0O oetector Data Link |

r@7

serayut ikt

Readout system
counting room

Detectors Optical fibers

cal éonnectigng |

FPGA (Field Programmable Gate Arrays) is intensively employed in: From detector

B Back-end readout electronics from detectors

I Opti

B Real-time data processing, i.e. signal filtering, fast Fourier processing,

etc. (Wideband Readout System for Microwave-Resonator Multiplexed Sensors - Nick

Karcher ) VME —CERN cards with # 5 FPGAs:
Real-time data processing, merging and

B  Low-level trigger process for real-time event filtering (FPGA-based real- . ;
formatting and low-level trigger

time track reconstruction for the CMS phase-2 tracker upgrade -Luis Eduardo Ardila Perez)
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Age of accumulation

Age of Invention
¢ Communication is main market

« FPGAs are much smaller than the application * Dedicated logic blocks (e.g. high-speed I/O,
problem size multiplier)
« No tools, manual P&R + Low cost FPGAs Ade of
» |P cores for large FPGAs g
heterogeneous
1984 1992 2000 2008 2014

100000

Age of expansion

» Rapidly growing FPGA sizes

* Increasing Demand for Design Automation

+ SRAM FPGAs first for new technology —
domination

LUT Count

Wire Length

XC2064 first FPGA (1985)




' Charting an Aggressive Course Forward

7\

\

Courtesy of Hanak, Georg (Avnet Silica)

FPGA

Low price

Programmable Systems Integration

Next technology

4 N

l Tools VIVADO' UltraFAST. l SDx~ VERSAL >
' Architecture 7 Series UltraScale™ Architecture ACAP \/
' Process 28HPL 20SoC 16FinFET+ K 7nm //

© Copyright 2018 Xilinx ' i: X”_INX

s 9



Two FPGA technology solutions ﬂ(“'

Karlsruher Institut fir Technologie

High-Bandwidth,

Low-Latency Connections Vi rtex U It ra Sca Ie +

Microbumps

Virtex 7T

Through-Silicon Vias (TSV) .
Placement & local routing

Global routing

C4 Bumps

8 nm FPGA Die (SLR)
65 nm Silicon Interposer

Package Substrate
BGA Solder Balls Solution
VlrteX 7T FPGA Enabled by SSl Ethemnet HBM (High Bandwidth Memory)
(Stacked Silicon Interconnect) technology DSP Capabilty integrated into the FPGA
Video
§ + DRAM: up to 4 GByte
5 Bandwidth Gap » Bandwidth: 1.84 Tb/s
DDR memory device o
bandwidth GAP _ - Ref. Xilinx white paper WP380
Year
53 7th KSETA Plenary Workshop 2020 | —Ehemet —Vieo — 0GP Copatity —00R _| , Institute for Data Processing and Electronics (IPE)



High-performance Deep Machine Learning (ll)

THz radiation

Synchrotron
accelerator

Voltage (mV)

Spot size measured with KALYPSO at VLD port

KIT

Karlsruher Institut fur Technologie

Turns

20000

Longitudinal bunch profjl’é measured with KALYPSO /\

80000

200 ' 14 \
180 Coherent synchrotron radiation 1.2

O —

160 'VVVV”V V 'U N 1022

D

T 140 08 =5

a 120 0679 s

100 | g-‘z" 2
\ 80 Micro-bunch substructures 0'0 /

49.0 49.1 49.2 49.3 49.4 49.5 49.6 49.7 ]
Time (ms)
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Readout card

KIT

\ - ¢ 0pt|ca| Ilnk 12 |anes @ 28 Gb/s Karlsruher Institut fir Technologie
g (full-duplex) > 330 Gb/s.

FMC+ 57.4 connector:
# 32 transvers @ 28 Gbps
# 160 lines @ 2 Gbps

Two SATA connections:

SODIMM-DDR4 for PS

~ o i S

Data saved directly on SSDs

Detector

PCle Gen 3 and 4, 16 lanes - up to 240 Gb/s full-duplex

55

L > DDR4for PL (FPGA)

ETH connected to
processor (TCP/IP)

Institute for Data Processing and Electronics (IPE)



High-performance heterogeneous FPGA-GPU DAQ AWJT

Karlsruher Institut fir Technologie

® Modern photon science detectors generate huge raw data volumes (~120 Gb/s)
® Observed slow changes in synchrotron machine (e.g. current) - sec - hrs

e ® Heterogeneous FPGA/GPU-based readout system, the UFO
L DAQ platform, has been developed

http://ufo.kit.edu/ufo

® The core component is a “novel” Direct Memory Access (DMA)
architecture

® Direct FPGA « GPU communication enables real-time data
processing

LSS

PCle readout card of UFO DAQ Platform

® DMA working close to theoretical limit of data link DETECTOR

® Data latency 5 times better than other DMA architectures

M. Caselle etal., JINST 12 C03015 (2017)
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Versal -
For traditionalists: This is the FPGA part

Some known facts

Adaptable Engines

KIT

Karlsruher Institut fur Technologie

6 Input LUTs
Each CLB has 32 LUTs and 64 FF

(4x density compared to US+)

16 LUTs in a slice can be
B a 64 bit RAM

| 32-bit shift registers (SRL32) or two SRL16

Internal connection of LUTs possible
4x clock, 4x set/reset, 16 clock enable
3 step voltage-scaling supported

8th Collaboration Workshop on Logitudinal Diagnostic, June 2018, DESY Michele Caselle

20%
More
Performance

VhicH

Institute for Data Processing and Electronics (IPE)



Versal — Al tile architecture QAT

Karlsruher Institut fur Technologie

1.3 GHz VLIW / SIMD vector processors

Parallelity
® VLIW: 7+ operations / clock cycle

® SIMD: 512 bit vector datapath
(8/16 /32 bit & SPFP operands)

® Upto 128 INT8 MACs / clock cycle / core

Memory

® 16 KB Internal program memory
m 32 KB data memory (parallel)

® Integrated DMA logic

Fixed-Point

Scalar Scalar ALU Vector Vector Unit

Register = Register = -
File Non-linear File Floating-Point

Functions Vector Unit

Scalar Unit Vector Unit

Instruction Fetch
& Decode Unit
Load Unit AlLoad Unit B Store Unit

Stream

Vector Processor
512-bit SIMD Datapath

32-bit Scalar RISC Processor

Local, Shareable Memory
32KB Local, 128KB Addressable

Memory Interface
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CPU & GPU vs Versal-ACAP

GPU & CPU - Mismatched Throughput Xilinx — Matched Throughput
CPU GPU CPU
T ——— | ):
o Al S Al >
No Al software Inference No Al software No Al\:l ;gf’&ware Inference \[o] AFI Iggf;\ware
In heterogenous CPU / GPU systems the GPU, In Versal devices the other performance-critical
the other performance-critical functions of the functions will be implemented in the FPGA,
application must still run in software (CPU) therefore, deep pipeline implementation on

massive parallel operations

Data copy from system memory to GPU global

memory is still a limitation Data copy/moving by a dedicated high-bandwidth
“Network on Chip” bus

Less flexible, but ... 5 m

Vitis simplifies the use of deep-learning neural networks, even for users without knowledge of deep-learning or FPGAs.
The Vitis Al Library allows users to focus more on the development of their applications, rather than the underlying hardware.

High flexibility degree



RF-ADC/DAC Implementation steps

® Add RF-ADC/DAC instance using the IP-Core

® Use GUI to configure and customize the analog

H

KIT

Karlsruher Institut fur Technologie

@ Connect the ADC/DAC to ZYNQ by

“‘Running_connection_automation”

Direct RF Sampling & digital Signal Processing

\ ,

Re-customize

2ynq Uitrascales RF Data Converter (2.0)

S

earch

Vidzo PHY Controller

Vidao Processing Subsystom

Vidso Test Patiern Gnerator

Video Timing Controler

V10 (Virtual Input/Output)

Viterdi Decoder

XAUL

YC:Cb to RGB Color-Space Converter

2ynq UtraScales WPSOC

2ynq Ultrascales RF Data Converter ;
ENTER 10 select ESCto cancel, Ciri+Qfor IP details

il

- bUC 3.5GHz
Band RF Si |
AL S e (¥ S
—
FPGA / DFE : HL._» =
Digital Up ; BPF T
4.9152GHz
Converter N
. Duplex 4:
Digital PLL Filter o
Frequency 2 o
Shifting and Ref Clock - -
Fillering 245.76MHz “_: — |
a )
= J
Receiver - o
3.93216GHz : ’ -
Digital Down 3.5pHz * wap
Converter < . SO ==
A BPF et n oD~ ;‘
Programmable logic (FPGA) .
60 12th Terascale Detector Workshop 2019 Michele Caselle
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Unsupervised Learning QAT

Unsupervised learning finds hidden patterns or intrinsic structures in data. A
Clustering is the most common unsupervised learning technique. /It is used for exploratory

height 4
X | y
- 170 67 Cluster 2
I\ 150 51 ‘
X
X
X X
X X X
Unlabelled data 190 87 KX
X Cluster 1
> weight

In cluster analysis, data is partitioned into groups based on some measure of similarity or
shared characteristic. Clusters are formed so that objects in the same cluster are very similar

and objects in different clusters are very distinct.
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Unsupervised Learning AT

Karlsruher Institut fur Technologie

k-Means o ® : k-Medoids " ®®

i ¢ . ® o® ®
How to work: Partitions o ® How to work: Similar to k-means,
data into k number of ° Result: Cluster centers but with the requirement that the Y °
mutually exclusive clusters °® ¢ ° o ° cluster centers coincide with .. “e®

o ® o points in the data. °

Best Used... Result: Cluster centers that
* When the number of clusters is known coincide with data points

» For fast clustering of large data sets

Hierarchical Clustering Self-Organizing Map

How It Works: Neural-network
based clustering that transforms a

How to work: Produces nested
sets of clusters by analyzing

similarities between pairs of Result: Dendrogram dataset into a topology-preserving
int showing the hierarchical 2D
points relationship map. Result: Lower-dimensional
between clusters (typically 2D) representation

Best Used...
When you don’t know in advance how many clusters
are in your data

Best Used...
To visualize high-dimensional data in 2D or 3D
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FPGA market or which vendors did survive?

achronix

SEMICONDUCTOR CORPORATION

FPGA IP core for
SoC designs

intel) FrPGA

SRAM based FPGAs
Broad range

= LATTICE

Low power &
cost efficient FPGAs

ﬁ\ MICROCHIP

2 small SRAM FPGA
families

&

Microsemi.
Flash & Antifuse
FPGAs

& XILINX

ALL PROGRAMMABLE

SRAM based FPGAs

2014 2015 2016

ETelecom

2017

Military and aerospace

u Others

2018 2019 2020

" Industrial
®m Data Processing
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Broad range
—_—
|

2021 2022 2023 2024

= Automotive
Consumer Electronics

Mountains of

Unstructured Data

= Xilinx Intel

One Architecture
Can’t Do It Alone

= Others

KIT

Karlsruher Institut fur Technologie

Xilinx: 50 %

Others: 13 %

This is the Era of
Heterogeneous Compute
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Convolution calculation

64
DARE R A

Convolution
S*h="% flkhli—k,j-1)
ko1

/ E hnagc h, h, h

X - flip
h=Kernel |[h. 'he |h -l h,
h h, h h
f Y - flip
[, [ [h, The [h, [*h=fh+ fh+ fih,
l.l . le I ® .Il he h, g +"'l/’h+""h( "'»/;\h’
{5 . i f Al\. h, h +'/;/l‘ + _/_;/I_. N /:,/’1
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Deep Neural Network (Convolution layer) ﬂ("‘

Karlsruher Institut fur Technologie

Neural network for physics:
® Supervised: Neural network trained by Monte Carlo simulations
® Unsupervised (no trained): to find “New Physics” without being explicitly programmed

Feature 1

Feature 2

Ay ;;t\‘
3¢
SEANRZ | 7
O v‘.\

Perform leading
» data analyses.
ZOSZC Physics event,
' Track reconstruction

XBK
Q¢
X

F A
RRRK
DN

% :‘?‘4\“ ;‘:9’\\1
oleJele]
o %,
R

Output Layer

LH-CMS event Hidden Layer 2

Hidden Layer 1
Input Layer
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High K Dielectric

Oxide
Silicon
Buried Oxide
planar FD-SOI finFET
> 28 nm 12 nm, 22 and 28 nm 5 nm (by intel) 7 nm, 16 and 20 nm

66 Institute for Data Processing and Electronics (IPE)
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Machine learning A‘(IT

Karlsruher Institut far Technologie

I'Y'ez‘fr‘]ii’r‘lg Supervised: All data is /abelled and the
algorithms learn to predict the output from
| the input data.

1 L} 1

Unsupervised: All data is unlabelled and
Supervised Unsupervised Reinforcement the algorithms learn to inherent structure
from the input data

Reinforcement: The learning algorithm is
Decision Sl trained not on present data but rather based
Making on a feedback system.

Classifications Regression Clustering
B Classification techniques predict discrete responses, classify input data into categories. Example: whether an email is genuine or
spam, or whether a tumor is cancerous or benign.

B Regression techniques predict continuous responses. Example: changes in temperature or fluctuations in power demand.
@ Clustering is employed for exploratory data analysis to find hidden patterns or groupings in data.

® Reinforcement is employed for fast feedback control systems (i.e. beam stability in accelerators).
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From data to understanding ... A\‘(IT

Karlsruher Institut fur Technologie

The generation of detectors will face a peak luminosity of 30 x 1034 cm2/s with a pile-up 1000 and radiation levels
that are 1-2 orders of magnitude larger than those at the HL-LHC. Timing precision of 5 — 10 ps is required for pile-
up mitigation. The resulting data rates lie in the hundreds of TB/s.

Data Analysis
@3{; SETE 3 ® Traditional data analysis techniques in HEP use a sequence of
= '/1% . / Boolean decisions followed by statistical analysis on the selected data.
{ ‘J}«E - _’i’ = The last big success of the traditional science is the Higgs boson 5
gl 1
63%

t-T :
® Find “a new physics” without being explicitly written in the analysis

code.
From Detectors and DAQ systems Mathematical models learnt from data

® The data deluge MUST BE readout and real-time processed without any data/information loss

B The radiation load on the detectors - will dramatically impact on the noise/efficiency of each single sensitive cell

Fast track-reconstruction and triggering Data Quality Monitoring
Sophisticated slow-controls _
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Examples: Objects recognition/classification A\‘(IT

Karlsruher Institut fur Technologie

® Neural network implemented resnet50 Linux + drivers + Resnet 50 (DNN) = on-FPGA

adas_detection 1images _v1 _PYy ) segmentation
common images_backup o r 0_ video_analysis
@ : cd resnetSO

@ : # 1s
Makefile build dpuv2_rundir mode picture.jpg resnet50 src words.txt
@ : # ./resnet50 dpuv2_rundir/

A/

Image : xian.]jpg

weight layer

F(x) top[0] prob = 0.416849 name = palace
Ide’:my top[1] prob = 0.119429 name = seashore, coast, seacoast, sea-coast
top[2] prob = 0.119429 name = fountain
Flx)+x @ prob = ©.043936 name = dome
h prob = 0.043936 name = church, church building

Image : burger.jpg

e top[0] prob =

2 L top[1] prob
= top[2] prob

top[3] prob
prob

.794760
.138109

0 cheeseburger
0

0.014557

¢}

0

plate
corn
tray
hotdog, hot dog, red

.008829
.006876

=

oo OB

.929687 name
.021864 name

cab, hack, taxi, taxicab
minivan

car mirror

motor scooter, scooter

police van, police wagon, paddy

xian.jpg

.010328 name
.008043 name
.003799 name

¥

[ T T TR T

burger.jpg

High-Flex 2 multi-purpose PCle card

car.jpg
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