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Challenges for the future 
The next generation of detectors are extremely challenging: HEP, astrophysics, photon science, etc.

HL-CMS: Unprecedented data rate of up to 50 Tb/s to be
processed in < 4 µs with high efficiency

MC

Particle physics

Unprecedent luminosity 
operations,
4D detectors: excellent spatial 
and time resolution

Photon Science

Terapixel per second 
imaging: 
• 100 million pixel, 
• MHz- frame rates
• High dynamic range

Astroparticle physics

Cryogenic detectors of unique 
energy resolution for dark 
matter searches and neutrino 
physics

CTA, IceCube-Gen2, etc.

Accelerators and beam 
physics

Complex dynamics on short 
time scale,
Multi-spectral THz detectors 
for beam diagnostics, for 
plasma accelerators

7th KSETA Plenary Workshop 2020 Michele Caselle
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Motivations - How to cope with the data deluge from the next generation of detectors?

Novel heterogenous programmable devices – What is the evolution of Field 
Programmable Gate Array (FPGA) devices?

Machine learning (ML) and artificial intelligence - Will enable us to process 
the data deluge in real-time?

AI on FPGA - How develop a fast ML inference on FPGA?

Applications: fast track-reconstruction based on ML, control of the beam dynamics in 
complex synchrotron machines e.g. autonomous accelerator?

FPGAs in Detector Instrumentation - Outlook

7th KSETA Plenary Workshop 2020 Michele Caselle
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Field Programmable Gate Arrays (FPGA)

7th KSETA Plenary Workshop 2020 Michele Caselle

The first commercially viable Field Programmable Gate Array (FPGA), named XC2064, has been invented in 1985
by Ross Freeman and Bernard Vonderschmitt, the Xilinx co-founders.

A FPGA is a semiconductor Integrated Circuit (IC) device on which the function can be defined after manufacturing
(“in the field”) using software-like languages (ex: VHDL, Verilog). FPGAs can be reconfigured at any times.

Programmable 
switch 

Input Output 
Block (IOB)

CLB
Slide (1)

Slide (0)Sw
itc

h 
M

at
rix

CIN0 CIN1

COUT1

COUT0

Configurable Logic Blocks (CLBs)

Programmable switch 

Programming an FPGA means configuring:
IOB - FPGA Input / output

Boolean function in the slides

The interconnections between slides and IOBArray with millions of elements

FPGA architecture
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Field Programmable Gate Arrays (FPGA)

CLB

Slide (1)

Slide (0)Sw
itc

h 
M

at
rix

CIN0 CIN1

COUT1

COUT0

Rst

Clk

A5
A4
A3
A2
A1

LUT (Look-Up Table) Flip-Flop (memory)MUX

Can be programmed

LUT contains memory cells to implement any arbitrary “small” logic function

Each cell holds “0” or “1”

Programmed with outputs of Truth Table

OUT 1

OUT 2
A6

OUT5 - LUT
A5
A4
A3
A2
A1

out

Q
FF

D

Slice

Example 

How works the look-up table:

A Look-Up Table (LUT) can implement any arbitrary Boolean function of its inputs and can be
cascaded to other LUTs to perform more complex functions
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Field Programmable Gate Arrays (FPGA)

7th KSETA Plenary Workshop 2020 Michele Caselle

Zynq ZU11EG Ultrascale+ (Xilinx)

Region 

52 available Input Output 
Blocks (IOB) @ 2 Gb/s 
(512 I/O in total)

FPGA is divided in regions  

Multi-gigabit transceivers I/O @ 
32 Gb/s (bandwidth = 1.2 Tb/s)
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Field Programmable Gate Arrays (FPGA)

7th KSETA Plenary Workshop 2020 Michele Caselle

Zynq ZU11EG Ultrascale+ (Xilinx)

DSP -Digital Signal Processing (2928 
units)

Block RAM 21 Mbit + 22 Mbit 
(Ultra RAM)

DSPRAM
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Field Programmable Gate Arrays (FPGA)

7th KSETA Plenary Workshop 2020 Michele Caselle

Zynq ZU11EG Ultrascale+ (Xilinx)

DSP

DSP

DSP

URAM

URAM

CLBs - Configurable Logic Blocks (> 1 Million of CLBs)
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Field Programmable Gate Arrays (FPGA)

7th KSETA Plenary Workshop 2020 Michele Caselle

Zynq ZU11EG Ultrascale+ (Xilinx)

DSP

DSP

DSP

URAM

URAM

Sea of Programmable Logic and Routing resourses

Latency & bandwidth comparable to ASICs 

CLBs - Configurable Logic Blocks (> 1 Million of CLBs)
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From FPGA …

… to Adaptive Compute Acceleration Platform

7th KSETA Plenary Workshop 2020 Michele Caselle

New generation of heterogenous 
programmable platform



11 Institute for Data Processing and Electronics (IPE)

FPGA devices for today’s detector challegers

Invented (XC2064)

SoC (Virtex-4)
FPGA @ 300 MHz FMAX +

450 MHz PowerPC processor

MPSoC (Zynq US)
1 GHz Dual-core ARM processor +

FPGA @ 740 MHz FMAX (all register used)

MPSoC (Zynq US+)
1.5 GHz Quad-core ARM processor +

FPGA @ 890 MHz FMAX (all register used)

RFSoC (Zynq US+)
1.5 GHz Quad-core ARM processor +

890 MHz FMAX (all register used) +
Radio frequency front-end (analog)

VERSAL architecture

FPGA based on +
Multi-core processors +
Radio frequency front-end (analog) +
Artificial intelligent & complex signal
processing (hard-core)

90 nm CMOS

16 nm TSMC (FinFET)

1985
2005 2014

2016 2018

Today
7 nm TSMC (FinFET)

16 nm TSMC (FinFET)

20 nm TSMC (FinFET)
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Heterogeneous: ZYNQ MPSoC technology
Heterogeneous platform of the Zynq System-on-Chip (SoC) integrates, in a monolithic device, FPGA 
resources with a back-end software running on a hard-core ARM-based processor. 

Programmable logic (PL)

Multi-Processor System-on-Chip (PS) 

System-on-Chip (SoC) workshop – CERN , 12-14 June 2019 
https://indico.cern.ch/event/799275/

Quad-core ARM processor  

Dual-core real-time 
processor  

Embedded Graphics 
Processing Unit (GPUs)

Standard peripherals hard 
IP-core

FPGA & High-speed 
interfaces based on TSMC 

16 FinFET

Ref. https://www.xilinx.com/support/documentation/selection-guides/zynq-ultrascale-
plus-product-selection-guide.pdf

7th KSETA Plenary Workshop 2020 Michele Caselle

i.e. Linux OS on deviceMulti-Processor 
System-on-Chip

FPGA
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Heterogeneous: ZYNQ RFSoC technology

Analog layers 

Standard peripherals 
hard IP-core

Up to #16 fast ADCs (12 bits) Up to #16 fast DACs (14 bits)

The bandwidth bottleneck of previous ZYNQ MPSoC was the bandwidth and complexity of the 
JESD204B standard communication for fast ADC/DAC

Ref. https://www.xilinx.com/support/documentation/selection-guides/zynq-usp-rfsoc-product-selection-guide.pdf

7th KSETA Plenary Workshop 2020 Michele Caselle
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Versal – ACAP (Overview)
New Xilinx architecture Versal - ACAP (Adaptive Compute Acceleration Platform) develop in TSMC 7nm 
FinFET technology, key features:

Ref: https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf

More heterogeneous: Scalar processors +

FPGA + HBM + RF + AI and DSP engines

Network-on-Chip: is a full blocking crossbar

between memories, PL, processors, AI engines.

It is built using stacked silicon interconnect (SSI)

technology

Adaptable engine (FPGA): memory

elements tightly coupled with programmable logic

AI engines: two-dimensional array of AI

engine optimized for real-time computation.

Scalar processors
+ real time 

Programmable 
Hardware (FPGA)

Dedicated AI engines
up to 130 TOPS @ INT8

7th KSETA Plenary Workshop 2020 Michele Caselle

DSP hard IP 
up to 10 TOPS @ INT8Real time  

processors 

PCIe Gen 4 @ 16 
lanes è 31 GB/s Integrated 

DDR4 memory

Multi-rate ETH MAC à
high-performance, low 
latency Ethernet port:
1 x 100GE .. 4 x 10GE

Giga
Transceivers

data links
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Versal- ACAP architecture

FPGA

Matrix up to 400 AI engines (VC1902)
Data Memory up to 100 Mb (VC1902)

7th KSETA Plenary Workshop 2020 Michele Caselle

I/O
I/O

DDR4 memories DDR4 memories
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Next generation of data processing 

12th Terascale Detector Workshop 2019 Michele Caselle
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Machine Learning
The generation of detectors will face a peak luminosity of 30 x 1034 cm-2/s with a pile-up 1000 and radiation levels
that are 1-2 orders of magnitude larger than those at the HL-LHC. Timing precision of 5 – 10 ps is required for
pile-up mitigation. The resulting data rates lie in the hundreds of TB/s.

https://indico.cern.ch/event/768915/
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What’s the different between Artificial Iintelligence, Machine 
Learning, and Deep Learning?

AI involves machines that can perform tasks that are characteristic of human intelligence
While this is rather general, it includes things like planning, understanding language, recognizing objects and sounds, learning,
and problem solving

“the ability to learn without being explicitly programmed.” You see, you can get a
traditional program without using machine learning, but this would require building
millions of lines of codes with complex rules and decision-trees.

At its core, machine learning is simply a way of achieving AI

Deep learning is one of many approaches to machine 
learning

Deep learning was inspired by the
structure and function of the brain,
namely the interconnecting of many
neurons. Artificial Neural Networks
(ANNs) are algorithms that mimic the
biological structure of the brain.
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Machine learning

7th KSETA Plenary Workshop 2020 Michele Caselle

Supervised: All data is labeled and the 
algorithms learn to predict the output from 
the input data.

Unsupervised: All data is unlabeled and the 
algorithms learn to inherent structure from 
the input data

Reinforcement: The learning algorithm is 
trained not on present data but rather based 
on a feedback system. 

Machine 
Learning

Supervised Unsupervised Reinforcement

No labelled dataLabelled data Interaction data

Input data

Algorithm trained by labeled data

ML Dog

Supervised
Task driven

Input data
Not trained

ML

Identify data 
cluster

Unsupervised
Data driven Learn from Mistakes

Environment

Reinforcement

ML agent

Actions

Observations

Rewards
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Supervised Machine Learning 

STEP 1 (Training): Process for machine to “learn” 
and optimize model from data, off-line. Can be 
performed on CPU/GPU rarely on FPGA

Forward propagation

Back propagation

Partially re-program 
the weights

STEP 2 (Inference): Using trained models to predict/estimate 
outcome from new observations in efficient deployments, on-
line. Can be performed on CPU/GPU and FPGA Forward propagation
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Reinforcement ML – Inverted pendulum application

Environment

Reinforcement

ML agent

Actions

Observations

Rewards

GOAL: to keep the pendulum in equilibrium

Action: to apply a “torque” or “rotational force” (𝜏)

Reinforcement ML: which learns from the rewards / mistakes

ML running on FPGA

Inverted pendulum 

𝜏

Simulation of inverted pendulum 
Reinforcement ML on FPGA

Learning phase 

Control phase 

R
ew

ar
d 

high

low

Inverted pendulum in 
equilibrium

Number of steps

Rewards time evolution learning/controlling

Courtesy: Weijia Wang



22 Institute for Data Processing and Electronics (IPE)

Machine learning

7th KSETA Plenary Workshop 2020 Michele Caselle

Supervised: All data is labelled and the 
algorithms learn to predict the output from 
the input data.

Unsupervised: All data is unlabelled and 
the algorithms learn to inherent structure 
from the input data

Reinforcement: The learning algorithm is 
trained not on present data but rather based 
on a feedback system. 

Machine 
Learning

Supervised

Classifications Regression

Unsupervised

Clustering

Reinforcement

Decision 
Making Controls

Deep Learning

Deep learning is part of a broader family of machine learning methods based on artificial neural networks. Learning can 
be supervised, unsupervised and reinforcements

The idea behind a deep neural network is to
mimic the biological structure of the brain with
a similar structure with layers of artificial
neurons
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Deep Neural Network

inputs
One or more 

Outputs

Nodes or neurons

Neuron

Very simple example of network

Nodes or neurons

weight

Bias

Weight matrix

7th KSETA Plenary Workshop 2020 Michele Caselle

ReLU activation function
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Deep Neural Network (Convolution layer) 
Convolution neural network 

-1 -1 -1

1 1 1

0 0 0
Filter 1

-1 1 0

-1 1 0

-1 1 0
Filter 2

0 0 0

1 1 1

-1 -1 -1
Filter 3

0 1 -1

0 1 -1

0 1 -1
Filter 4

Juts a simple 
weight

7th KSETA Plenary Workshop 2020 Michele Caselle

Convolution
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Deep Neural Network (Convolution layer) 
Convolution neural network 

-1 -1 -1

1 1 1

0 0 0
Filter 1

-1 1 0

-1 1 0

-1 1 0
Filter 2

0 0 0

1 1 1

-1 -1 -1
Filter 3

0 1 -1

0 1 -1

0 1 -1
Filter 4

7th KSETA Plenary Workshop 2020 Michele Caselle

Convolution
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Deep Neural Network (Convolution layer) 
Convolution neural network 

-1 -1 -1

1 1 1

0 0 0
Filter 1

-1 1 0

-1 1 0

-1 1 0
Filter 2

0 0 0

1 1 1

-1 -1 -1
Filter 3

0 1 -1

0 1 -1

0 1 -1
Filter 4

7th KSETA Plenary Workshop 2020 Michele Caselle

Outputs



27 Institute for Data Processing and Electronics (IPE)

Deep Neural Network (Convolution layer) 
Convolution neural network 

-1 -1 -1

1 1 1

0 0 0
Filter 1

-1 1 0

-1 1 0

-1 1 0
Filter 2

0 0 0

1 1 1

-1 -1 -1
Filter 3

0 1 -1

0 1 -1

0 1 -1
Filter 4

7th KSETA Plenary Workshop 2020 Michele Caselle

Features 1

Features 2

Features 3

Features 4

The convolution layer will extract 
several “special features” from the 
original picture

F2

F4

F1

F3

Feature extraction
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Deep Neural Network (Convolution layer) 
Convolution neural network 

-1 -1 -1

1 1 1

0 0 0
Filter 1

-1 1 0

-1 1 0

-1 1 0
Filter 2

0 0 0

1 1 1

-1 -1 -1
Filter 3

0 1 -1

0 1 -1

0 1 -1
Filter 4

The convolution layer will extra a 
“special feature” from the original 
picture

7th KSETA Plenary Workshop 2020 Michele Caselle

Features 1

Features 2

Features 3

Features 4

All extracted features are combine in 
the output layer in order to recognize 
more complex structures7

F1

F2

F3

F4
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Deep Neural Network (Convolution layer) 
Feature 1

Feature 2 Face recognition

A deep neural network consists of a hierarchy of layers, whereby each layer transforms the input data into more 
abstract representations (e.g. edge -> nose -> face). The output layer combines those features to make predictions
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Deep Neural Network (Convolution layer) 

Michele

Feature 1
Feature 2 Face recognition

Forward propagation 
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How to implement a fast ML inference on 
FPGA?

7th KSETA Plenary Workshop 2020 Michele Caselle
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High-Performance DNN on FPGA

7th KSETA Plenary Workshop 2020 Michele Caselle

DNN produces many parameters for the model, which increases the compute cost and requires high 
memory bandwidth. There are two main ways to optimize a DNN application:

Pruning: This is a form of DNN compression. It reduces the number of
“synaptic” connections and “neurons” and so that the overall amount of data
is reduced. Typically, weights close to zero are removed.

Quantization: To bring the neural network to a reasonable
size while also achieving high-performance accuracy. In this
method, the process of approximating a neural network that
uses floating-point numbers (FTP32) by a neural network of
low-bit width numbers (INT8) is performed.

Comparison GPU (FP 32) vs FPGA (INT8)
What we lose in accuracy?
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Machine learning on FPGA 
Nowadays, several High Level tools are available to generate “fast” ML inferences running on FPGA 

High Level Synthesis four Machine Learning, developed at CERN

What is hls4ml à framework removes major barrier on hardware development of ML algorithms allowing 
developers with little or no FPGA expertise to program the FPGA

Machine learning for Data Quality Monitoring (on-line), developed at CERN (HL-CMS)  

Based on supervised learning à binary classification problem: good plot vs bad plot

Xilinx Deep Learning Processing Unit (DPU) which is a configurable computation engine dedicated to 
convolutional neural networks

…

Custom frameworks: Snowflake: arXiv:1708.02579, DNNWeaver: http://act-lab.org/artifacts/dnnweaver/, 
fpgaConvNet: http://cas.ee.ic.ac.uk/people/sv1310/ fpgaConvNet.html, CNNECST, many others …

7th KSETA Plenary Workshop 2020 Michele Caselle
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hls4ml – Workflow
Very success framework, developed at CERN for CMS jet classification is now 
integrated and distributed in the Xilinx Software Development Kit (XSDK)
Webpage: https://fastmachinelearning.org/hls4ml/

Hls4ml workflow

1. Machine Learning 
frameworks (GPU/CPU) 

DNN DNN

Trained Model

2. Pruning & Quantization.
Convert the trained/optimized
DNN model in a Vivado High
Level Synthesis Project

3. Netlist synthesis, 
placement and routing 

4. FPGA Firmware

Running on Linux

User 
Input

7th KSETA Plenary Workshop 2020 Michele Caselle
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hls4ml – reconstruction chain for jet 
GOAL: Machine Learning for low-level trigger system based on FPGA à fast jet substructure 
classification 

Res_V FPGA 
prediction

Python Keras
calculation (GPU)

Gluon (g) 0.118164 0.12993355
Quark (q) 0.639648 0.6487177
Boson (W) 0.118164 0.10633943
Boson (Z) 0.118164 0.10616959
top quark (t) 0.015625 0.00883975

Latency time:
GPUs: of ~ tens µs 
FPGA: 16 clock cycles @ 200 MHz = 80 ns

Jets classifications:
Gluon (g)
Quark (q) 
Boson (W)
Boson (Z)
Top quark (t) 

FPGA vs GPU

Implementation on ZYNQ UltraScale+ XCZU9EG

84 % DSP
25 % LUT

5 layers of fully connected 
layers neural network

Neural network 
implementation

Courtesy: Weijia Wang

Monte Carlo data simulation

7th KSETA Plenary Workshop 2020 Michele Caselle
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Xilinx Deep Learning Processing Unit (DPU)
The Xilinx Deep Learning Processor Unit (DPU) is a configurable computation engine dedicated for convolutional neural 
networks. 

The DNNDK (Deep Neural Network Development Kit) is designed as an integrated framework, which aims to simplify 
and accelerate deep learning application development and deployment on the Deep Learning Processor Unit (DPU).

7th KSETA Plenary Workshop 2020 Michele Caselle

High-Flex 2 multi-purpose PCIe card
FPGA processor: Zynq XCZU11

DATA IN DATA OUT

DPU

BUS
DNNK Library & APIs

DNN training, optimization 

Configuration & 
instructions 

Processor System

FPGA
Internal architecture

DDR4 memory

PE: processor engines

On Zynq XCZU11
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Xilinx Deep Learning - Workflow

7th KSETA Plenary Workshop 2020 Michele Caselle

Unoptimized, dense DNN 
(FP64) and target data

DNNDK library and APIs must be installed on the SoC (PetaLinux)

DPU must be implemented and integrated within the FPGA infrastructure, one or 
more parallels DPUs could be instantiated which will work in parallel

DNNDK (compression)

Pruning

Quantization

Removing redundant connections

Reducing the precision

Pruned & Quantized DNN 
(INT8)

Compiler

Assembler

DPU instruction

DPU on the FPGA 
configured and ready to work

1

2

3

4

5

6CPU/GPU
On Zynq XCZU11
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Examples: Objects recognition/classification

7th KSETA Plenary Workshop 2020 Michele Caselle

High-Flex 2 multi-purpose PCIe card

Courtesy: Weijia Wang

Neural network implemented resnet50
Xilinx Deep Learning Processor Unit (DPU)

cat.jpg cab.jpg

xian.jpg
HF-2.jpg

No high-flex 
trained data

Linux + drivers + Resnet 50 (DNN) à on-FPGA
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Examples: Advanced driver-assistance systems (ADAS)

7th KSETA Plenary Workshop 2020 Michele Caselle

High-Flex 2 multi-purpose PCIe card

ETH

Courtesy: Weijia Wang

Video stored in the on-board 
DDR4 memory and processed by 
yolov3detection on FPGA

IPE – ADAS Demo

GOAL: Real-time recognition of cars, trucks, people, bikes, motorcycles, etc.

Yolov3 architecture

UFO Camera
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Advanced beam control (KARA) 

7th KSETA Plenary Workshop 2020 Michele Caselle

Goal: to keep the coherent synchrotron radiation (CSR) THz intensity stable by fast feedback to RF System

Complex and nonlinear dynamics in longitudinal / transverse bunch profiles à described by a nonlocal nonlinear partial differential vlasov
fokker planck equation describing the time evolution of the probability distribution of a particle in synchrotron machine.

THz  - KAPTURE

We would like to control the phase space of the 
bunches by ML on FPGA

Action: to control the nonlinear dynamics of the phase 
space of the beam by a modulation of the RF system

RF System parameters are: RF Amplitude, phase and 
frequency 

period about ms
THz

Detector

Synchrotron 
accelerator

THz CSR source

THz intensity is not stable

Courtesy: Tobias Boltz
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Advanced beam control (KARA) - Reinforcement 

Reinforcement Learning  
Inference on FPGA

KAPTURE

Synchrotron 
accelerator

Complex and multi-dimensional control system working in real-time
ML architecture candidate based on: reinforcement learning 

THz
Detector

Environment

RF System 

RF Driver

PCIe

GPU supervises the 
FPGA actions

Feedbacks

Learn from Mistakes

Environment

Reinforcement

ML agent

Actions

Observations

Rewards

Electrical signals
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Reinforcement Learning  
Inference on FPGA

PCIe

GPU supervise the FPGA
actions

7th KSETA Plenary Workshop 2020 Michele Caselle

Advanced beam control (KARA) - Reinforcement 

KAPTURE

Synchrotron 
accelerator THz

Detector

Environment

Action to RF system

THz measurement 
(KAPTURE)

Environment 
(KARA)

State

Actor 

Rewards

Agent inference on FPGA

FPGA PL
µ
σ

Teaching

RF System 

CriticDeep Deterministic Policy Gradients (DDPG) is one actor-
critic based reinforcement learning algorithm for
continuous control system. Feasible for:

hyper-parameters controls: amplitude, phase, 
frequency of the RF cavity 

When robustness is required

Working in progress … 

RF Driver

Courtesy: Weijia Wang and Tobias Boltz

Complex and multi-dimensional control system working in real-time
ML architecture candidate based on: reinforcement learning 
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PANDA – fast track-reconstruction

7th KSETA Plenary Workshop 2020 Michele Caselle

FAIR at GSI

Trigger-less readout system (no hardware trigger)

GOAL: to explore ML for fast-track reconstruction of PANDA

Forward Tracking System detector 

Barrel Tracking detector Courtesy: Waleed Esmail (Forschungszentrum Jülich) and Weijia Wang

FS1+FS2

FS3+FS4

FS5+FS6

Target fixed experiment
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Two-steps fast-track reconstruction

FS1+FS2

FS3+FS4

FS5+FS6

7th KSETA Plenary Workshop 2020 Michele Caselle

STEP 1: Find “local” Track Segments by DNN (under 
investigation  by unsupervised ML)

Monte Carlo event simulation (Forward Tracking System)
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Two-steps tracking reconstruction

FS1+FS2

FS3+FS4

FS5+FS6

7th KSETA Plenary Workshop 2020 Michele Caselle

To find local track segments

STEP 1: Find “local” Track Segments by CNN (under 
investigation  by unsupervised ML)
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Two-steps tracking reconstruction
By Unsupervised (K-means) and supervised (recurrent neural network) learning:

FS1+FS2

FS3+FS4

FS5+FS6

7th KSETA Plenary Workshop 2020 Michele Caselle

Recurrent neural networks have a memory that
enables them to remember important events that
happened many time steps in the past.

STEP 2: interpolate the track segments from the different 
parts of the FTS to form a full track candidate, it is based 
on a Recurrent Neural Network (RNN)

Temporal dynamic behavior

Track
STEP 1: Create Track Segments by using K-means 
clustering algorithm

To find local track segments

For: handwriting recognition or speech recognition. 
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PANDA – A possible ML implementation

7th KSETA Plenary Workshop 2020 Michele Caselle

Courtesy: Waleed Esmail (Forschungszentrum Jülich) 
and Weijia Wang

Local track segment

PCIe/InfiniBand

STEP 2: Recurrent Neural 
Network (RNN) on High 
Performance Computing 
Farm (green-cube)

PANDA

Full Track-reconstruction

STEP 1 : 
DNN on FPGA

CPU/GPU

Distributed AI architecture running on heterogenous FPGA-GPUs infrastructure, local track reconstruction on FPGA
and RNN on GPUs and integrated within the on-line event selection framework

The purity specifies which fraction of hits in one track come from the
correct particle.

The efficiency is defined as the ratio of the number of correctly
reconstructed tracks to all generated tracks.Local track segment “ONLY”
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48

Michele Caselle

Impact
Motivations - Next generation of detectors will generate huge and complex 
data volume (petabyte/sec), serious technological challenges à to push the 
technology envelope (especially for trigger and data acquisition)

Novel programmable devices families with dedicated AI
engines opens new prospective for future detectors.

Machine learning is one prominent technique for data
processing (trigger, fast-track reconstruction), intelligent detector
configuration/calibrations, data quality monitor, etc.

… we are just at the beginning of a 
new disruptive technology … 

What’s about FPGA also for data analysis ?

Thank you for your attention

New generation of development tools for users
without knowledge of deep-learning or FPGA.
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Backup slides
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FPGA in detectors

7th KSETA Plenary Workshop 2020 Michele Caselle

Data

Detectors

Trigger
Control

VME –CERN cards with # 5 FPGAs:
Real-time data processing, merging and
formatting and low-level trigger

Back-end readout card for Alice Pixel 
Detector (CERN 2008-2010)

FPGA (Field Programmable Gate Arrays) is intensively employed in:

Back-end readout electronics from detectors

Real-time data processing, i.e. signal filtering, fast Fourier processing,

etc. (Wideband Readout System for Microwave-Resonator Multiplexed Sensors - Nick

Karcher )

Low-level trigger process for real-time event filtering (FPGA-based real-

time track reconstruction for the CMS phase-2 tracker upgrade -Luis Eduardo Ardila Perez)

Optical fibers Readout system 
counting room 

From detector

To DAQ

From /to 
central trigger
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Three Ages of FPGA 

1984 1992 2000 2008 2014

XC2064 first FPGA (1985)

# 64 flip flops
# 128 3-LUTs
# 58 I/O pins
FMAX =18 MHz (toggle)
Tech. CMOS - 2 um

Age of Invention
• FPGAs are much smaller than the application 

problem size
• No tools, manual P&R

Age of accumulation
• Communication is main market 
• Dedicated logic blocks (e.g. high-speed I/O, 

multiplier) 
• Low cost FPGAs 
• IP cores for large FPGAs 

Age of expansion
• Rapidly growing FPGA sizes 
• Increasing Demand for Design Automation 
• SRAM FPGAs first for new technology –

domination 

Age of 
heterogeneous
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Courtesy of Hanak, Georg (Avnet Silica)

VERSAL

ACAP

Next technology

Low price
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Two FPGA technology solutions

Virtex 7T FPGA Enabled by SSI 
(Stacked Silicon Interconnect) technology 

Placement & local routing 
Global routing

HBM (High Bandwidth Memory) 
integrated into the FPGA

• DRAM: up to 4 GByte
• Bandwidth: 1.84 Tb/s

Virtex Ultrascale+Virtex 7T

DDR memory device 
bandwidth GAP

Solution

Ref. Xilinx white paper WP380 

7th KSETA Plenary Workshop 2020
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High-performance Deep Machine Learning (II)

Longitudinal bunch profile using KALYPSO 

Synchrotron 
accelerator

THz radiation

Coherent synchrotron radiation 

Longitudinal bunch profile measured with KALYPSO

Micro-bunch substructures

Gaussian bunch shape
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New Readout card 
Optical link: 12 lanes @ 28 Gb/s 
(full-duplex) > 330 Gb/s. 

Detector

PCIe Gen 3 and 4, 16 lanes à up to 240 Gb/s full-duplex

Two SATA connections:
Data saved directly on SSDs

µUSB + UART connectors

SODIMM-DDR4 for PS

DDR4 for PL (FPGA)

ETH connected to 
processor (TCP/IP) 

FMC+  57.4 connector:
# 32 transvers @ 28 Gbps
# 160 lines @ 2 Gbps
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High-performance heterogeneous FPGA-GPU DAQ

PCIe readout card of UFO DAQ Platform 

Modern photon science detectors generate huge raw data volumes (~120 Gb/s)
Observed slow changes in synchrotron machine (e.g. current)  à sec - hrs

Direct FPGA « GPU communication enables real-time data 
processing

M. Caselle  et al., JINST 12 C03015 (2017)

The core component is a “novel” Direct Memory Access (DMA) 
architecture

System 
Memory

GPUs 

DETECTORDMA working close to theoretical limit of data link

Data latency 5 times better than other DMA architectures

Heterogeneous FPGA/GPU-based readout system, the UFO 
DAQ platform, has been developed

http://ufo.kit.edu/ufo
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Versal – Adaptable Engines 

8th Collaboration Workshop on Logitudinal Diagnostic, June 2018, DESY        Michele Caselle
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Versal – AI tile architecture
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CPU & GPU vs Versal-ACAP

In heterogenous CPU / GPU systems the GPU, 
the other performance-critical functions of the 
application must still run in software (CPU) 

Data copy from system memory to GPU global 
memory is still a limitation

High flexibility degree

In Versal devices the other performance-critical 
functions will be implemented in the FPGA, 
therefore, deep pipeline implementation on 
massive parallel operations 

Data copy/moving by a dedicated high-bandwidth 
“Network on Chip” bus

Less flexible, but … 

No AI software No AI software No AI software
FPGA

No AI software
FPGA

Vitis simplifies the use of deep-learning neural networks, even for users without knowledge of deep-learning or FPGAs.
The Vitis AI Library allows users to focus more on the development of their applications, rather than the underlying hardware.
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RF-ADC/DAC Implementation steps
Add RF-ADC/DAC instance using the IP-Core

Use GUI to configure and customize the analog block

Connect the ADC/DAC to ZYNQ by
“Running_connection_automation”

Direct RF Sampling & digital Signal Processing

Digital Up 
Converter

Digital Down 
Converter

Programmable logic (FPGA)

12th Terascale Detector Workshop 2019 Michele Caselle
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Unsupervised Learning 

7th KSETA Plenary Workshop 2020 Michele Caselle

Unsupervised learning finds hidden patterns or intrinsic structures in data.
Clustering is the most common unsupervised learning technique. It is used for exploratory 

Unlabelled data
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x Cluster 1

Cluster 2

In cluster analysis, data is partitioned into groups based on some measure of similarity or 
shared characteristic. Clusters are formed so that objects in the same cluster are very similar 
and objects in different clusters are very distinct. 
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Unsupervised Learning 

k-Means

How to work: Partitions 
data into k number of 
mutually exclusive clusters

Self-Organizing Map

How It Works: Neural-network 
based clustering that transforms a 
dataset into a topology-preserving 
2D map.

Best Used…
• When the number of clusters is known 
• For fast clustering of large data sets 

k-Medoids

How to work: Similar to k-means, 
but with the requirement that the 
cluster centers coincide with 
points in the data.

Best Used... 
When you don’t know in advance how many clusters 
are in your data 

Best Used... 
To visualize high-dimensional data in 2D or 3D 

Result: Cluster centers

Result: Cluster centers that
coincide with data points

Result: Dendrogram 
showing the hierarchical 
relationship
between clusters

Hierarchical Clustering

How to work: Produces nested 
sets of clusters by analyzing 
similarities between pairs of 
points Result: Lower-dimensional

(typically 2D) representation
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FPGA market or which vendors did survive? 

Xilinx: 50 %

Altera / Intel:  37 %

Others: 13 %

7th KSETA Plenary Workshop 2020 Michele Caselle
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Convolution calculation

PAGE 64
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Deep Neural Network (Convolution layer) 

LH-CMS event

Feature 1
Feature 2

Feature N
Perform leading 
data analyses.
Physics event,
Track reconstruction

Neural network for physics:
Supervised: Neural network trained by Monte Carlo simulations
Unsupervised (no trained): to find “New Physics” without being explicitly programmed
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CMOS technology 

PAGE 66

> 28 nm 12 nm, 22 and 28 nm 5 nm (by intel) 7 nm, 16 and 20 nm 
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Machine learning

7th KSETA Plenary Workshop 2020 Michele Caselle

Supervised: All data is labelled and the 
algorithms learn to predict the output from 
the input data.

Unsupervised: All data is unlabelled and 
the algorithms learn to inherent structure 
from the input data

Reinforcement: The learning algorithm is 
trained not on present data but rather based 
on a feedback system. 

Machine 
Learning

Supervised

Classifications Regression

Unsupervised

Clustering

Reinforcement

Decision 
Making Controls

Classification techniques predict discrete responses, classify input data into categories. Example: whether an email is genuine or

spam, or whether a tumor is cancerous or benign.

Regression techniques predict continuous responses. Example: changes in temperature or fluctuations in power demand.

Clustering is employed for exploratory data analysis to find hidden patterns or groupings in data.

Reinforcement is employed for fast feedback control systems (i.e. beam stability in accelerators).



68 Institute for Data Processing and Electronics (IPE)

From data to understanding … 

7th KSETA Plenary Workshop 2020 Michele Caselle

From Detectors and DAQ systems

Fast track-reconstruction and triggering Data Quality Monitoring
Autonomous detector configuration

Sophisticated slow-controls 

The generation of detectors will face a peak luminosity of 30 x 1034 cm-2/s with a pile-up 1000 and radiation levels
that are 1-2 orders of magnitude larger than those at the HL-LHC. Timing precision of 5 – 10 ps is required for pile-
up mitigation. The resulting data rates lie in the hundreds of TB/s.

The data deluge MUST BE readout and real-time processed without any data/information loss

The radiation load on the detectors à will dramatically impact on the noise/efficiency of each single sensitive cell

Traditional data analysis techniques in HEP use a sequence of

Boolean decisions followed by statistical analysis on the selected data.

Find “a new physics” without being explicitly written in the analysis

code.

Data Analysis

On-line self-calibration

The last big success of the traditional science is the Higgs boson

Mathematical models learnt from data
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Examples: Objects recognition/classification

7th KSETA Plenary Workshop 2020 Michele Caselle

High-Flex 2 multi-purpose PCIe card

Courtesy: Weijia Wang

Neural network implemented resnet50 Linux + drivers + Resnet 50 (DNN) à on-FPGA
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