

Characterization and Optimization of the KATRIN Tritium Source

Tritium Laboratory Karlsruhe (IKP), KIT department of Physics

Alexander Marsteller for the KATRIN collaboration

www.kit.edu

Neutrino mass measurement with KATRIN

KArlsruher TRItium Neutrino Experiment

- Mass measurement via energy spectroscopy of electrons created in beta-decay of tritium
- Initial and final energies in tritium decay can be calculated with a high degree of precision
 - Low endpoint energy of 18.6 keV Model-independent

KATRIN target sensitivity (90% C.L.): 0.2 eV/c² neutrino mass

2

2/24/20

Requirements on the tritium source

Luminosity of 10¹¹ e⁻/s
 Tritium throughput of 40 g/day
 Tritium purity >95%
 Continuous 24/7 operation over periods of 60 days
 Windowless gaseous tritium source
 Gas density profile (approx.)
 <li

KATRIN needs a tritium source with a stability of 0.1% to reach its target sensitivity

Importance of source stability

- KATRIN measures the <u>shape</u> of the spectrum
- MAC-E type spectrometers can only measure the spectrum by scanning point for point
- Fluctuations of the source during a scan distort the shape of the spectrum
 - →Fake neutrino mass signal

Importance of source stability

- KATRIN measures the <u>shape</u> of the spectrum
- MAC-E type spectrometers can only measure the spectrum by scanning point for point
- Fluctuations of the source during a scan distort the shape of the spectrum
 - →Fake neutrino mass signal

KATRIN needs a tritium source with a stability of 0.1% to reach its target sensitivity

All parameters need to be stable for the source activity to be stable!

24.02.20 M.Sc. Alexander Marsteller – Characterization and Optimization of the KATRIN Tritium Source

24.02.20 M.Sc. Alexander Marsteller – Characterization and Optimization of the KATRIN Tritium Source

9

Topics of this presentation

Investigation of source stability parameters:

- Injection pressure
- Gas composition
- Conductance of the injection system

Status after initial commissioning

- Stabilization system works as intended
- Long term operation within specifications is uppossible
- Steps in pressure data show limitation by digitization of the sensor signal
- Remaining structure visible in signal

12

15.84 15.83 15.83 15.82 15.82 15.81 0 15.81 0 15.81 15.81 15.81 15.81 15.81 15.82 15.81 15.81 15.82 15.81 15.82 15.83 15.82 15.83 15.82 15.83 15.82 15.83 15.82 15.83 15.82 15.83 15.83 15.82 15.83 15.83 15.82 15.83 15.82 15.83 15.82 15.83 15.83 15.82 15.83 15.83 15.82 15.83 15.83 15.82 15.83 15.82 15.83 15.82 15.83 15.83 15.82 15.83 15.81 15.82 15.81 15.82 15.81 15.81 15.82 15.81 15.82 15.81 15.81 15.82 15.81 15.82 15.81 15.82 15.81 15.81 15.82 15.81 15.

There is room for improvement in the stabilization system!

sensors connected to the final buffer

15.83

Pressure

Sensor controller output is digitized RS-232 and analog 0-10 V

Two redundant pressure

- Regulation system used analog signal digitized by a 16-bit ADC card of the Siemens PCS7 process control system
- The regulation system has to work with only 2 ADC steps as input values

Investigating the pressure signal in detail

Try to measure the pressure with better precision!

Readout hardware upgrade

- Replaced the 16-bit PCS7 readout with a 24-bit ADC
- Additional improvement: 16-bit output for regulation compared to 12-bit PCS7 output

6000

8000

The pressure signal can now be measured with a much higher precision!

14

2000

0

4000

Time in s

Tritium Laboratory Karlsruhe (IKP), KIT department of Physics

0

200 400 600

Number of data points

Improved stability after hardware changes

Improvement of the pressure stability was a complete success!

Karlsruhe Institute of Technology

Topics of this presentation

Investigation of source stability parameters:

- Injection pressur
- Gas composition
- Conductance of the injection system

Gas composition in the inner loop

Gas composition has impact on:

- Gas dynamical properties (viscosity, heat capacity...)
- Initial and final states of the β -decay
- Electron scattering in the source

Two kinds of gas composition changes:

Isotopic exchange

Tritium Source

- Vacuum vessel steel walls contain much H which can form HT with the gaseous T_2
- Accumulation of non-Q₂ impurities
 - TMPs are not completely leak tight and contain bearings and electronics which gas out
 - Tritium induces the radiochemical formation of CT₄, CO, and CO_2

Filtration and monitoring of the gas composition are essential!

M.Sc. Alexander Marsteller – Characterization and Optimization of the KATRIN

Gas composition behavior during long term measurements

- Restarting the circulation always disrupts the equilibrium
- Impurities lead to a lower equilibrium purity than that of the "fresh" tritium gas
- TLK infrastructure delivers tritium gas with slightly changing composition for each batch
- Different gas batches cause small changes in the equilibrium purity

Long term operation well above 95% tritium purity

Topics of this presentation

Investigation of source stability parameters:

- Injection pressure
 Gas composition
- Conductance of the injection system

Changes in the conductance of the injection system

- Conductance can only be derived from multiple parameters
- Absolute value of conductance less important than stability
- Causes for conductance changes:

20

2/24/20

- Changes in gas composition
- Geometry changes in the injection piping
- Temperature changes in the injection piping

Experiences during first operation with pure tritium

- Flow decrease over time observed upon initial operation with tritium
- No visible change in gas composition
- \rightarrow Blockage that grows with time
- → Growth of ice inside the injection piping

 CO_{2}

 \rightarrow Warm up the system

The culprits:

21 2/24/20

CO

M.Sc. Alexander Marsteller – Characterization and Optimization of the KATRIN Tritium Source

Countermeasures

- CT_4 , CO, and CO₂ are created internally via radiochemistry \rightarrow Filtration difficult
- But: only limited amount of carbon present in system
 - \rightarrow Exhaust production mechanism
 - \rightarrow Increase tritium pressure by more than 1 order of magnitude above normal level

Effect vanishes as expected after prolonged exposition to higher tritium pressure.

22

2/24/20

80

70

60

30

20

10

Changes in the conductance of the injection system

- Conductance can only be derived from multiple parameters
- Absolute value of conductance less important than stability
- Causes for conductance changes:

23

- Changes in gas composition
- Geometry changes in the injection piping
- Temperature changes in the injection piping

Temperature induced conductance changes

e in mbar

- To limit heat load on beam tube, injection system is connected to LN₂ shield
- LN₂ shield fluctuations change conductance of small connected section
- Reason: Pressure changes in LN₂ storage tank cause temperature changes of LN₂ cooling

The source is highly sensitive to outside influences!

24

24.02.20

Topics of this presentation

Investigation of source stability parameters:

- Injection pressur
- Gas composition
- Conductance of the injection system

Summary

26

- Tritium loops successfully commissioned with pure tritium in 2019 and operated for >155 d for a total throughput of \approx 3 kg
- The stabilization of the injection pressure of KATRIN's tritium source has been improved by a factor of 5
- The measurement methods for the gas composition have been characterized w.r.t. the composition inside the source
- The time evolution of the gas composition has been understood and can be modelled
- From the standpoint of gas dynamics, the source of KATRIN is well understood! Effects influencing the conductance of the injection have been studied
- Effects of radiochemical impurity observed and successfully mitiga

Thank you for your attention

New upper limit on the nautrino mass by KATRIN

- A total of 522 h of scanning
- 2 million events in a 90 eV wide interval
- An excellent goodness of fit:
 - $\chi^2 = 21.4$ for 23 d.o.f
- Best fit value:

28

$$m^2(\nu_e) = \left(-1.0 + 0.9 - 1.1\right) \text{eV}^2 (90\% \text{ CL})$$

New upper limit: Lokhov Tkachov: $m(v_e) < 1.1 \text{ eV} (90\% \text{ C.L.})$ Feldmann Cousins: $m(v_e) < 0.8 \text{ eV} (90\% \text{ C.L.})$

Statistical probability to measure negative neutrino mass squared

There is much to gain by exchanging the readout!

24.02.20 M.Sc. Alexander Marsteller – Characterization and Optimization of the KATRIN Tritium Source

30

Tritium Laboratory Karlsruhe (IKP), KIT department of Physics

A smooth world between the steps

Remaining spikes on the pressure signal

31

Monitoring the gas composition

- Residual Gas Analyzer (RGA)
 - Very high dynamic range
 - Sensitive to all gas components
 - Needs low operation pressure → Only usable in beam tube
 - Not usable in external magnetic field
 → No online measurements

Laser Raman Spectroscopy (LARA)

- High precision measurement
- Online measurements
- Only sensitive to Raman active molecules (not to e.g. ³He)
- Needs high pressure (≈200 mbar)
 → Not usable in beam tube

Comparability of gas composition measurement methods

- Traces of gases are difficult to quantify accurately with LARA
- RGA data hard to quantify accurately
 - Different ionization energies make comparing peak heights difficult
- Slight delay between RGA and LARA
 - Gas needs time to travel from LARA through stabilized buffer and ≈20 m piping into beam tube

LARA is a good method to measure the gas composition of highly pure hydrogen isotopes in quasi equilibrium.

33

Modelling the gas composition

- Simple model of connected vessels
- Initial concentration parameters from LARA
- Flow rates and impurity generation rates from measured data

The gas composition can be modelled successfully using a simple model and some experimental values.