

Triple-differential measurement of the dijet cross section at CMS

7th KSETA Plenary Workshop

21 February, 2020

Daniel Savoiu, Klaus Rabbertz

Institute of Experimental Particle Physics (ETP)

KIT - The Research University in the Helmholtz Association

2

The CMS experiment

- "Compact Muon Solenoid" large general-purpose particle detector at the Large Hadron Collider (LHC) at CERN
- Run 2 (2016–2018): ~140 fb-1 of data collected
 - systematic uncertainties are becoming the limiting factor in many analyses
 - improving **precision** becomes more important
- hadron collider: composite initial state
 - proton structure remains a significant source of uncertainty

PDFs & jet cross sections

- parameterized probability of finding a constituent *parton* (quark or gluon)
- not given by theory
 - \rightarrow fit of theory predictions to measurements
- jet cross sections particularly suited for this

Theory (state of the art: NNLO pQCD)

Measurement (*LHC*: jet cross sections at $\sqrt{s} = 13 \text{ TeV}$)

Dijet production

- events with two jets (or more) in the final state
- differential cross section sensitive to α_s and parton distribution functions PDFs
- one of the highest cross sections at the LHC
 - \rightarrow high event rates
 - \rightarrow low background
- triple-differential measurement
 - event counts sufficiently high for threedimensional division of phase space
 - beneficial for constraining PDFs by exploiting dependence on dijet topology

PDF sensitivity

jet topology can help disentangle PDFs from unrelated effects across a wider x region

6

Triple-differential measurement

 objective: triple-differential measurement of the dijet production cross section

 $\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}y^{*}\,\mathrm{d}y_{\mathrm{b}}\,\mathrm{d}\langle\rho_{\mathrm{T}}\rangle_{1,2}} = \frac{1}{\varepsilon\cdot\mathcal{L}} \frac{N_{\mathrm{events}}}{\Delta y^{*}\,\Delta y_{\mathrm{b}}\,\Delta\langle\rho_{\mathrm{T}}\rangle_{1,2}}$

 variables chosen in such a way as to exploit jet topology and increase PDF sensitivity:

Variables $\langle p_{T} \rangle = \frac{1}{2} (p_{T}^{\text{jet1}} + p_{T}^{\text{jet2}}) \quad "p_{T}\text{-average"}$ $y_{b} = \frac{1}{2} | y^{\text{jet1}} + y^{\text{jet2}} | \quad "y\text{-boost"}$ $y^{*} = \frac{1}{2} | y^{\text{jet1}} - y^{\text{jet2}} | \quad "y\text{-star"}$

Data & event selection

■ data set: **2016** data (35.9 fb⁻¹ @ 13 TeV)

- select events with at least two "good" jets
 - jets reconstructed with two jet radii: R = 0.4 and R = 0.8
 - calibrated jet energy scale
 - calibrated jet energy resolution (in Monte Carlo simulation)
 - jets required to pass additional jet identification criteria (prevent spurious jets due to noise)
- kinematic cuts for final selection

•
$$p_T^{\text{jet1}} > 100 \text{ GeV}$$
 • $|y^{\text{jet1}}| < 3.0$ • $E_T^{\text{miss}} / \sum_i E_{T,i} < 0.3$ • background rejection background rejection

8

switch to next trigger once fully efficient

entire phase space

- divide $\langle p_{T} \rangle$ into regions
- only one trigger active per region
- no single trigger fully efficient across

- to cover entire phase space, multiple prescaled triggers must be used
- cross section is **steeply falling** in $\langle p_T \rangle$

Trigger combination

measure efficiency using **bootstrapping** method:

- pre-select events triggered by T_{n-1}
- emulate T_n trigger decision:

 $\varepsilon(T_n) = \mathsf{N}(T_n \cap T_{n-1}) / \mathsf{N}(T_{n-1})$

- **combine** triggers:
 - only one trigger **active** in each measurement bin $\rightarrow T_a$
 - choose lowest-prescale trigger with an efficiency ε > 99.5%
- event yield maximized while ensuring full efficiency

Trigger path	Eff. lumi. 2016
HLT_DiPFJetAve40	0.1 pb ⁻¹
HLT_DiPFJetAve60	1.7 pb ⁻¹
HLT_DiPFJetAve80	4.2 pb ⁻¹
HLT_DiPFJetAve140	27.6 pb ⁻¹
HLT_DiPFJetAve200	138.7 pb ⁻¹
HLT_DiPFJetAve260	522.7 pb ⁻¹
HLT_DiPFJetAve320	2968.7 pb ⁻¹
HLT_DiPFJetAve400	9026.4 pb ⁻¹
HLT_DiPFJetAve500	29309.3 pb ⁻¹

 \rightarrow event weight in data:

$$w_{Data} = \begin{cases} 1 / L_{eff}(T_a) & \text{if trigger } T_a \text{ fired,} \\ 0 & \text{otherwise} \end{cases}$$

Simulations & Pileup

- Monte Carlo simulations available in CMS:
- Madgraph + Pythia (LO pQCD)
- full detector and pileup simulation
- pileup distribution in Monte Carlo adapted to actual data taking conditions
 - events are **reweighted** based on expected number of pileup interactions μ

Unfolding

- measurements affected by finite detector resolution
 - distribution of reconstructed quantity is smeared compared to the true distribution
- resolution is specific to each detector
 - direct comparison with other data / with theory not directly possible
 - limited usefulness or theory fits

 unfolding → "reversing" detector smearing effects

Insert: phase space unraveling

Detector response matrix

- effect of finite detector resolution can be described by a matrix
 - entry A_{ij} → probability of an event
 generated in bin *j* to be
 reconstructed in bin *i*
 - estimated from Monte Carlo simulation where generator-level information is known ("Monte Carlo truth")
- unfolded distributions are determined by inverting this matrix and multiplying it to the measured distribution

$$\rightarrow \boldsymbol{g}_{j} = \sum_{i} (A^{-1})_{ij} (r_{i} - \boldsymbol{f}_{i})$$

Unfolded cross section

- shown: R = 0.4 (R = 0.8 similar)
- **right**: complementary measurement in dijet invariant mass (m_{jj}) instead of $\langle p_T \rangle$

Comparison to LO simulation (Madgraph + Pythia)

- shown: ratio of unfolded data to generator-level distribution in Monte Carlo (LO)
- data deviates from prediction at high values of y^{*} and y_b

Comparison to fixed-order theory (NNLOJET + fastNLO)

- *shown*: ratios to fixed-order **NLO theory**
 - no non-perturbative corrections yet
 - NNLO available soon
- *points*: measured **unfolded cross sections** with **statistical** uncertainties
- *lines*: theory with alternative PDFs
- improved description at high y*, deviation at high y_b remains
- indication that PDFs may benefit from differential measurements in y_b

Uncertainties

- uncertainties between 5% and 20%
- largest contribution from jet energy scale

statistical uncertainty

prefiring uncertainty

- uncertainty on correction of inefficiency due to *trigger prefiring*
- jet energy scale uncertainty
 - estimated by applying systematically shifted jet energy corrections
- Iuminosity uncertainty
 - official recommendation: 2.5%
- jet energy resolution uncertainty
 - estimated by systematically varying the jet energy resolution

- **triple-differential** dijet cross section measurement at 13 TeV with **2016** data (35.9 fb⁻¹)
 - as a function of $(y^*, y_b, \langle p_T \rangle)$ and (y^*, y_b, m_{jj})
 - **2016** data set (35.9 fb⁻¹)
- **combination** of multiple trigger paths to maximize accessible phase space
- **3D unfolding** via phase space unraveling and matrix inversion
- uncertainties dominated by jet energy scale systematics: 5% 25%
- comparison to fixed-order theory NLO calculations (NNLO in progress)

Unfolding (technical details)

2 event selections:

- $\mathcal{F}_{reco} \rightarrow cuts$ applied on reco-level objects
- $\mathcal{F}_{\text{gen}} \rightarrow \text{cuts applied on gen-level objects}$
- fill histograms with event counts per gen bin (j) and/or reco bin (i):
 - $M_{ij} \rightarrow$ migrations
 - $r_i \rightarrow$ reco-level events
 - $g_j \rightarrow$ gen-level events
- obtain fakes and response matrix:

 $f_i = r_i - \sum_j M_{ij}$ $A_{ij} = \frac{M_{ij}}{\alpha}$

unfold via matrix inversion:

Response matrix (correlation coefficients)

- unfolding yields familiar correlation pattern:
 - anti-correlation for nearest neighbor bins, positive correlation for second-nearest, etc.

Background rejection

Subprocess composition

- initial state partons determine PDF contribution
- composition varies across $(\langle p_T \rangle, y^*, y_b)$ phase space

Boosted region

- dominated by quark-gluon scattering
- gluon typically softer than quark
 - \rightarrow decorrelate g and q PDF contributions

