Center Activities: Helmholtz-Zentrum Dresden-Rossendorf

Andreas Wagner

HZDR Facts and Figures

Member of the **Helmholtz Association** since 2011

Foundation 1956 (former GDR) / 1992

Employees approx. 800

including about 260 scientists

+ 130 doctoral students and guest

scientists from 40+ countries

Research Sites

DRESDEN

Leipzig (isotope research)
Freiberg (resource technologies)
Grenoble (ESRF beam line)

Local Partners

TU and U-Hospital Dresden

HZDR Research Fields

Matter

- Matter and Cosmos
 Nuclear and Hadron Physics at GSI & FAIR
- Matter and Technologies
 Accelerator Research and Development
 Detector Technology and Systems
- From Matter to Materials and Life
 Structure, Dynamics and Function of Matter
 Physics and Materials Science with Ion Beams
 Research with Highest Electromagnetic Fields

Energy

- Nuclear Safety Research and Transmutation
- Matter, Energy and Resources (Ecology, Technology)
- Fluid Dynamics

Health

- Imaging and Radio-oncology: OncoRay
- Radio-pharmaceuticals
- Accelerator-based tumor therapy

Key Objectives: Matter and Cosmos

Detector developments for FAIR

- Large area drift chambers (HADES/CBM)
- Scintillators read out by Silicon Photomultipliers (NuPNET / NEDENSAA, KETEK and HZDR Innovation GmbH).
- Large area resistive plate detectors (MIPs for CBM, Neutrons for R3B) with high-rate capabilities based on ceramics (Fraunhofer IKTS-DD) tested using superconducting electron LINAC in single-electron mode

Key Objectives: Matter and Energy

Non-destructive testing

- Fast x-ray computed tomography (ROFEX)
- Gamma-ray computed tomography (Gamma-CT)
- Position-resolved positron-annihilation lifetime spectroscopy need fast and highly efficient scintillators and semiconductors (CZT).

Key Objectives: Health

Clinical prototype of a **Compton camera** for in-vivo dosimetry in proton tumor therapy, requires innovative detectors (CZT), data acquisition and image reconstruction, high-performance computing and data management through **NVIDIA CUDA Research Centre**.

New accelerator concepts (laser-particle acceleration)

