A1a

Quark-mass effects in Higgs-boson production in gluon fusion

Pls: Michał Czakon, Robert Harlander

Goals

Full quark mass dependence at NNLO.

Total cross section. Differential distributions.

Also "extreme" phase space regions: resummation.

Why?

Enters many Higgs measurements

Precise theory understanding is essential

 $\begin{array}{cccc} LO & \longrightarrow & NLO & \longrightarrow & NNLO \\ 1978 & 1991 & 2002 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$

ATLAS Preliminary	Stat.		Syst.	SM
$ s = 13 \text{ TeV}, 24.5 - 79.8 \text{ fb}^{-1}$ $m_{e} = 125.09 \text{ GeV} u_{e} < 2.5$			-	
$p_{sM} = 71\%$		Total	Stat.	Svst.
ggF yy 🚔	0.96	±0.14 (±0.11,	+0.09
ggF ZZ	1.04	+0.16 (±0.14,	±0.06)
ggF WW	1.08	±0.19 (±0.11,	±0.15)
ggF tt I	0.96	+0.59	+0.37	+ 0.46 - 0.38)
ggF comb.	1.04	±0.09 (±0.07 ,	+ 0.07 - 0.05)
VBF γγ	1.39	+0.40 -0.35 (+0.31 -0.30,	+ 0.26 - 0.19)
VBF ZZ	2.68	+0.98 -0.83 (+0.94 -0.81 >	+0.27 -0.20)
VBF WW	0.59	+0.35 -0.35 (+0.29 -0.27,	±0.21)
VBF TT H	1.16	+0.58 -0.63 (+ 0.42	+ 0.40)
VBF bb	3.01	+1.67 -1.61 (+ 1.60 - 1.57 •	+ 0.09 - 0.36)
VBF comb.	1.21	+0.24 -0.22 (+0.1B -0.17 ;	+ 0.16 - 0.13)
	1.09	+0.58 -0.54 (+0.53 -0.49 >	+0.25 -0.22)
VH ZZ	0.68	+1.20 -0.78 (+1.18	+0.18 -0.11)
VH bb	1.19	+0.27 -0.25 (+0.18 -0.17,	+0.20 -0.18)
VH comb.	1.15	+0.24 -0.22 (±0.16,	+ 0.17 - 0.16)
$ttH+tH\gamma\gamma$	1.10	+ 0.41 - 0.35 (+ 0.35	+0.19 -0.14)
	1.50	+0.59 -0.57 (+0.43	+ 0.41 - 0.38)
	1.38	+1.13 -0.95 (+0.84 -0.75,	+0.75 -0.59)
ttH+tH bb	0.79	+0.60 (±0.29,	±0.52)
ttH+tH comb.	1.21	+0.26 -0.24 (±0.17 ,	+ 0.20)
	1 1			
-2 0 2 4		6		8
		~		Ŭ

Parameter normalized to SM value

Higgs Effective Field Theory (HEFT)

$$\sigma_{\infty}^{\rm HO} \equiv \sigma^{\rm LO}(m_t) \left(\frac{\sigma^{\rm HO}}{\sigma^{\rm LO}}\right)_{m_t \to \infty}$$

Higgs Effective Field Theory (HEFT)

HEFT for the total xsec

Uncertainties

Uncertainties

p_T distribution: 1/m_t expansion

Harlander, Neumann '12

Comparison: HH

Institute for

icle Physics

Comparison: HH

p_T distribution

large-p⊤:

Lindert, Kudashkin, Melnikov, Wever '18

full:

S.P. Jones, Kerner, Luisoni '18

What is missing?

The usual problems:

- Reduction: solve large system of equations
 - re-insert solution into amplitude

FireFly: solve on finite fields Klappert, Lange (+ Klein) '19

FireFly Klappert, Lange (+ Klein) '19

→ millions of Feynman integrals
related by Integration-by-Parts identities
→ huge system of linear equations

solution: $I = \sum_{n=1}^{O(100)} c_n(d, z) \hat{I}_n$ masters rational functions

Reconstruct $c_n(d, z)$ by "probing" it with integer d and z. Work on Finite Fields: \mathbb{Z}_p

The three-loop form factor

Reduction:

- millions of integrals → few hundred masters
- solve large system of equations
- re-insert solution into amplitude

Calculate masters

canonical basis:

does not always work...

nl-terms

RH, Prausa, Usovitsch '19 P3H-19-021

Leading Color

(12 pages of this)

Prausa, Usovitsch '20

Full form factor

Calculate masters:

$$\partial_z \hat{I}_n(\epsilon, z) = M_{nm}(z) \hat{I}_m(d, z)$$

→ solve numerically

Full form factor

Padé approximations:

- Use expansions for
 - $m_t \to \infty$
 - top threshold, i.e. $\hat{s} \approx 4m_t^2$

Davies et al. '19 P3H-19-012

Comparison

 $H \rightarrow \gamma \gamma$

Summary

- All parts to total xsec are available
- Putting things together: a matter of time
- Will decrease theoretical uncertainty by 1-2%
- Next stop: differential / fiducial xsecs
- Other progress: mixed EW/QCD Bonetti et al. '20 P3H-20-036
- Open issues: e.g. small/intermediate p_T

 $m_h < p_T < M_H, m_t$

