

Project B1b: Precision top-quark physics at the LHC

PIs: M. Worek & M. Czakon

Annual Meeting of the SFB TRR 257, October 6th-8th, 2020, Siegen

Outline

Introduction

- Status of theoretical predictions A QCD
- State-of-the-art (fixed order) theoretical predictions for:

 $pp
ightarrow tar{t}, tar{t}\gamma, tar{t}W^{\pm}, tar{t}Z$

- Modeling of top quark production & decays
 becays
 becays top quark in di-lepton channel
 - NWA
 - Off-shell top quark effects

Papers in Project B1b (so far...)

NNLO

- 1. NNLO QCD corrections to leptonic observables in top-quark pair production and decay
 - <u>*Czakon</u>, Mitov, Poncelet*</u>
 - arXiv: 2008.11133
- 2. Higher order corrections to spin correlations in top quark pair production at the LHC
 - Behring, <u>Czakon</u>, Mitov, Papanastasiou, Poncelet
 - Phys. Rev. Lett. 123 (2019) 082001

NLO

- 1. The simplest of them all: $t\bar{t}W^{\pm}$ at NLO accuracy in QCD
 - Bevilacqua, <u>Bi</u>, Hartanto, Kraus, <u>Worek</u>
 - JHEP 08 (2020) 043
- 2. Off-shell vs on-shell modelling of top quarks in photon associated production
 - Bevilacqua, Hartanto, Kraus, <u>Weber</u>, <u>Worek</u>
 - JHEP 2003 (2020) 154
- 3. Towards Constraining Dark Matter at the LHC: Higher order QCD predictions for $pp \rightarrow t\bar{t} + p_T^{miss}$
 - Bevilacqua, Hartanto, Kraus, Weber, <u>Worek</u>
 - JHEP 1911 (2019) 001

Why top quark is special

- Infrared structure of **QCD** ⇒ Precision physics
 - Extract SM parameters as precisely as possible $\Rightarrow \alpha_s \& m_t$
 - Constraining gluon PDFs
 - Verify couplings to other particles $\Rightarrow \gamma, H, Z, W^{\pm}$
- Background process to various SM studies A Higgs boson
- Window to New Physics
 - Direct searches Alin background to many BSM scenarios
 - Indirect searches > Precision tests of properties, rare decays, various top quark production modes

tt(j) & *ttV*

- NNLO in NWA \Rightarrow *tt* di-lepton channel
- NLO with off-shell top quarks 🖙 *tt, ttj* di-lepton channel
- Besides *tt(j)* more exclusive final states can be accessed @ LHC

HELAC-PHEGAS *Cafarella, Papadopoulos, Worek '09*

Top-Quark Pair Production & Decays

Normalized differential *tt* crosssection ⇒ Azimuthal opening angle between two leptons

agreement

Top quarks in NWA di-lepton channel

Behring, Czakon, Mitov, Papanastasiou, Poncelet '19

Inclusive ⇒ does not assume any selection cuts

Fiducial ⊨> based on the ATLAS selection cuts

Proper modeling of topquark production & decay essential

Top-Quark Pair Production & Decays

Normalized differential tt cross-section

LHCtopWG

Top-Quark Pair Production & Decays

Czakon, Mitov, Poncelet '20

- *p*_T of *b*-jet & lepton ⇒ Difference between two data sets ⇒ With and without neutrinos from semileptonic B-decays
- All observables strongly affected ⇒ Overall normalization & shape

Combined tty + tWy Production & Decays

	$p_{\rm T}(\gamma)$		$ \eta(\gamma) $ $\Delta R(\gamma, \ell)_{\min}$		′, ℓ) _{min}	$\Delta \phi(\ell,\ell)$		$ \Delta \eta(\ell,\ell) $		
Predictions	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value
$t\bar{t}\gamma + tW\gamma$ (MG5_aMC+Pythia8)	6.3/10	0.79	7.3/7	0.40	20.1/9	0.02	30.8/9	< 0.01	6.5/7	0.48
$t\bar{t}\gamma + tW\gamma$ (MG5_aMC+Herwig7)	5.3/10	0.87	7.7/7	0.36	18.9/9	0.03	31.6/9	< 0.01	6.8/7	0.45
Theory NLO	6.0/10	0.82	4.5/7	0.72	13.5/9	0.14	5.8/9	0.76	5.6/7	0.59
									· · · · · · · · · · · · · · · · · · ·	

NWA & Off-Shell Effects

Complete off-shell effects

- Off-shell top quarks are described by Breit-Wigner propagators
- Double-, single- as well as non-resonant top-quark contributions are included
- All interference effects consistently incorporated at matrix element level

NWA

• Works in the limit $\Rightarrow \Gamma_t/m_t \rightarrow 0$

 $\Gamma_t = 1.35159 \; {
m GeV}, \; m_t = 173.2 \, {
m GeV}, \; \Gamma_t/m_t pprox 0.008$

- Incorporates only double resonant contributions
- Restricts the unstable top quarks (W gauge bosons) to on-shell states

NWA & Off-Shell Effects

- Feynman Diagrams ⇒ 628 @ LO for gg channel versus 38 in NWA
- 8 diagrams with photon in production and 30 in decay stage

two top-quark resonances

one top-quark resonance

no top-quark resonances

- NLO ⇒ 4348 real emission & 36032 @ 1-loop for gg channel
- Most complicated ⇒ 90 heptagons & 958 hexagons

 $pp
ightarrow e^+
u_e \mu^- ar{
u}_\mu b ar{b} \gamma$

How Good Is the NWA ?

- Should be accurate for sufficiently inclusive observables
- Off-shell effects for integrated fiducial $\sigma_{tt} \Rightarrow at few \% level @ NLO in QCD$

•	tt (di-lepton)	Denner, Dittmaier, Kallweit, Pozzorini '11 '12 Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek '11 Frederix '14 Heinrich, Maier, Nisius, Schlenk, Winter '14 Denner, Pellen '16 (EW+QCD) Jezo, Lindert, Nason, Oleari, Pozzorini '16 (PS)
•	tt (lepton+jets)	Denner, Pellen '18
•	ttH (di-lepton)	Denner, Feger '15 Denner, Lang, Pellen, Uccirati '17 (EW+QCD)
•	ttj (di-lepton)	Bevilacqua, Hartanto, Kraus, Worek '16 '18
•	ttγ (di-lepton)	Bevilacqua, Hartanto, Kraus, Weber, Worek '18 '19 '20
•	$ttZ, Z \rightarrow \nu_l \nu_l$ (di-lepton)	Bevilacqua, Hartanto, Kraus, Weber, Worek '19
•	ttW (di-lepton)	Bevilacqua, Bi, Hartanto, Kraus, Worek '20 Denner, Pelliccioli '20
•	ttbb (di-lepton)	Denner, Lang, Pellen '20

Fiducial Cross Section for tty

$e^+ u_e \mu^- ar{ u}_\mu b ar{b} \gamma \ @ \ { m LHC}_{13{ m TeV}}$						
Modelling Approach	$\sigma^{ m LO}$ [fb]	$\sigma^{ m NLO}$ [fb]				
full off-shell ($\mu_0 = H_T/4$)	$7.32^{+2.45(33\%)}_{-1.71(23\%)}$	$7.50^{+0.11(1\%)}_{-0.45(6\%)}$				
NWA $(\mu_0 = m_t/2)$ NWA $(\mu_0 = H_T/4)$	$8.08^{+2.84}_{-1.96}{}^{(24\%)}_{(24\%)}$ 7.18^{+2.39}{}^{(33\%)}	$7.28_{-0.03(0.4\%)}^{-0.99(13\%)}$ $7.33_{-0.43(5.9\%)}^{-0.43(5.9\%)}$				
$\frac{1}{(\mu_0 - \mu_1/4)}$	-1.68(23%)	-0.24(3.3%)				
$egin{array}{l} { m NWA}_{\gamma-{ m prod}} \ (\mu_0=m_t/2) \ { m NWA}_{\gamma-{ m prod}} \ (\mu_0=H_T/4) \end{array}$	$\begin{array}{c} 4.52^{+1.09}_{-1.11} \scriptstyle{(24\%)} \\ 3.85^{+1.29}_{-0.90} \scriptstyle{(23\%)} \end{array}$	$\begin{array}{c} 4.13 \substack{-0.05 \ (1.0\%)}\\ -0.05 \ (1.2\%) \\ 4.15 \substack{-0.12 \ (2.3\%)}\\ -0.21 \ (5.1\%) \end{array}$				
NWA _{γ-decay} ($\mu_0 = m_t/2$)	$3.56^{+1.20(34\%)}_{-0.85(24\%)}$	$3.15^{-0.46(15\%)}_{+0.03(0.9\%)}$				
NWA _{γ-decay} ($\mu_0 = H_T/4$)	$3.33^{+1.10(33\%)}_{-0.77(23\%)}$	$3.18^{+0.31(9.7\%)}_{-0.03(0.9\%)}$				
$\mathrm{NWA}_\mathrm{LOdecay}~(\mu_0=m_t/2)$		$4.85^{+0.26}_{-0.48}$				
$NWA_{LOdecay} \ (\mu_0 = H_T/4)$		$\left(4.63^{+0.44}_{-0.52}(11\%)\right)$				

Various approaches for the modelling of top quark production & decays

HELAC-NLC

- Off-shell effects 3%
- Consistent with $\Gamma_t / m_t \approx 0.8\%$
- 57% $\Rightarrow \gamma$ emitted in production
- **43**% $\Rightarrow \gamma$ emitted in decay stage
- For $p_{T,b} > 25 \ GeV$ it is 50%-50%
- NLO QCD corrections to top quark decays are negative and not small
- **17%** $\Rightarrow \mu_0 = \frac{1}{2} m_t$
- 12% $\Rightarrow \mu_0 = \frac{1}{4} H_T$
- Theoretical uncertainties not underestimated for the full NWA

How Good Is the NWA ?

- *Dimensionful* observables are sensitive to non-factorizable top quark corrections
 Tens of per cent in specific phase-space regions
- Kinematical edges & high p_T regions

HELAC-NLO

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

$e^+ u_e \mu^- ar{ u}_\mu b ar{b} \gamma \ @ \ \mathrm{LHC_{13TeV}}$

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

■ 3 different resonance histories 🖙 Resolved jet at NLO gives 9 in total

(i)	$t = W^+ (ightarrow e^+ \nu_e) b$	and	$ar{t} = W^- (ightarrow \mu^- ar{ u}_\mu) ar{b} ,$
(ii)	$t = W^+(ightarrow e^+ u_e) b\gamma$	and	$ar{t} = W^- (ightarrow \mu^- ar{ u}_\mu) ar{b} ,$
(iii)	$t = W^+ (ightarrow e^+ u_e) b$	and	$ar{t} = W^- (o \mu^- ar{ u}_\mu) ar{b} \gamma$

Compute for each history Q and pick the one that minimises the Q value

 $Q = |M(t) - m_t| + |M(\bar{t}) - m_t|$

- Double-resonant (DR): $|M(t) m_t| < n \Gamma_t$, and $|M(\bar{t}) m_t| < n \Gamma_t$
 - Two single-resonant regions (SR):

$$|M(t) - m_t| < n \Gamma_t$$
, and $|M(\bar{t}) - m_t| > n \Gamma_t$,
 $|M(t) - m_t| > n \Gamma_t$, and $|M(\bar{t}) - m_t| < n \Gamma_t$

• Non-resonant region (NR):

 $|M(t) - m_t| > n \Gamma_t$, and $|M(\bar{t}) - m_t| > n \Gamma_t$ 15

HELAC-NLO

 $e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma @ LHC_{13TeV}$

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

- Off-shell effects:
 - High p_T region of various dimensionful observables
 - Vicinity of kinematical edges
 - Contribute up to **50% 60%**

HELAC-NLO

Observables sensitive to top quark off-shell effects
 Substantial contributions
 from single top quark process

Dimensionless observables rather insensitive to top quark off-shell effects

γ in Production & Decays ⇒ Differential Level

HELAC-NLO

- Diverse picture
- Photon emission in decays can be reduced
 - $H_T > 400 \; GeV$
 - $p_T(\gamma) > 50 \ GeV$

γ in Production & Decays ⇒ Differential Level

Bevilacqua, Hartanto, Kraus, Weber, Worek '20 10^{1} 10^{2} NWA_{full} ---- NWA $_{\gamma \text{ prod.}}$ NWA_{full} ---- $NWA_{\gamma prod.}$ \cdot NWA_{γ decay} $NWA_{\gamma \, decay}$ 10^{0} 10^{-1} $d\sigma/p_T(\gamma)$ [fb/GeV] $d\sigma/H_T$ [fb/GeV] 10^{-} 10^{-3} 10^{-4} 10^{-5} 10^{-6} 10^{-7} 10^{-8} Ratio to NWA_{full} Ratio to NWA_{full} 0.750.750.500.500.250.250 ^L0 0 200300 1000 1200 1400 1600 1800 100 400500200400 600 800 H_T $p_T(\gamma)$ -- NWA_{γ prod} NWA_{full} NWA_{full} - NWA_{2 prod}. $-NWA_{\gamma \, decay}$ $NWA_{\gamma \text{ decay}}$ 3 $d\sigma/\Delta R(\gamma b_2)$ [fb] $d\sigma/\Delta R(\gamma l_1)$ [fb] 1 1 Ratio to NWA_{full} Ratio to NWA_{full} 1 0.750.750.500.500.250.2500 0_0 2 3 $\mathbf{2}$ 3 4 5 4 $\Delta R(\gamma b_2)$ $\Delta R(\gamma l_1)$

HELAC-NLO

Diverse picture

600

5

- Photon emission in decays can be reduced
 - $H_T > 400 \; GeV$
 - $p_T(\gamma) > 50 \ GeV$

ttW with dynamical & fixed scale

$pp \rightarrow e^+ \nu_e \, \mu^- \bar{\nu}_\mu \, b\bar{b} \, e^+ \nu_e @ \, \mathrm{LHC}_{13\mathrm{TeV}}$

$\mu_R=\mu_F=\mu_0=m_t+m_W/2$							Bevilacqua,	
PDF	$p_T(j_b)$	$\sigma^{\rm LO}~[{\rm ab}]$	$\delta_{ m scale}$	$\sigma^{\rm NLO}$ [ab]	$\delta_{ m scale}$	$\delta_{ m PDF}$	$\sigma^{\rm NLO}/\sigma^{\rm LO}$	Bi, Hartanto,
NNPDF3.0	25	106.9	$+27.7 (26\%) \\ -20.5 (19\%)$	123.2	$+6.3 (5\%) \\ -8.7 (7\%)$	$+2.1 (2\%) \\ -2.1 (2\%)$	1.15	Kraus, Worek '20
	30	99.2	+25.8 (26%) -19.1 (19%)	113.1	$+5.4 (5\%) \\ -7.8 (7\%)$	$+1.9(2\%)\ -1.9(2\%)$	1.14	
	35	90.8	+23.7 (26%) -17.5 (19%)	102.6	$+4.7 (5\%) \\ -6.8 (7\%)$	$+1.7(2\%)\ -1.7(2\%)$	1.13	
	40	82.1	$+21.5 (26\%) \\ -15.9 (19\%)$	92.0	$+4.0 (4\%) \\ -6.1 (7\%)$	$+1.6(2\%)\ -1.6(2\%)$	1.12	

$\mu_R=\mu_F=\mu_0=H_T/3$								
PDF	$p_T(j_b)$	$\sigma^{\rm LO}~[{\rm ab}]$	$\delta_{ m scale}$	$\sigma^{ m NLO}~[m ab]$	$\delta_{ m scale}$	$\delta_{ m PDF}$	$\sigma^{ m NLO}/\sigma^{ m LO}$	
NNPDF3.0	25	115.1	$+30.5 (26\%) \\ -22.5 (20\%)$	124.4	$+4.3 (3\%) \\ -7.7 (6\%)$	$+2.1 (2\%) \\ -2.1 (2\%)$	1.08	
	30	106.5	$+28.2 (26\%) \\ -20.8 (20\%)$	113.9	$+3.5 (3\%) \\ -6.8 (6\%)$	$+1.9(2\%)\ -1.9(2\%)$	1.07	
	35	97.0	$+25.7 (27\%) \\ -18.9 (20\%)$	103.1	$+3.1 (3\%) \\ -6.0 (6\%)$	$+1.7(2\%)\ -1.7(2\%)$	1.06	
	40	87.2	$+23.2 (27\%) \\ -17.0 (20\%)$	92.3	$+2.8 (3\%) \\ -5.3 (6\%)$	$+1.5(2\%)\ -1.5(2\%)$	1.06	

ttW stable with respect to central scale choice in fiducial regions

ttW with dynamical scale

Bevilacqua, Bi, Hartanto, Kraus, Worek '20

Fixed scale

- NLO QCD 🖙 +25% up -35%
- Uncertainties ⇒ 15% 20%
- Perturbative instabilities in TeV regions

Dynamical scale

- NLO QCD 🖨 **±10%**
- Uncertainties ⇒ **5% 10%**
- Stabilises tails and keeps NLO uncertainties bands within LO ones

ttW with dynamical scale

HELAC-NLO

Bevilacqua, Bi, Hartanto, Kraus, Worek '20

- PDF uncertainties $\Rightarrow 5\%$
- Negligible when contrasted with scale dependence
- Differences between results for various PDF sets are similar in size to internal PDF uncertainties
- For dynamical scale choice PDF uncertainties and scale dependence can be similar in high *p*_T regions

ttW with dynamical & fixed scale

Bevilacqua, Bi, Hartanto, Kraus, Worek '20

Modelling Approach	$\sigma^{ m LO}$ [ab]	$\sigma^{ m NLO}~[m ab]$
full off-shell ($\mu_0 = m_t + m_W/2$)	$106.9^{+27.7(26\%)}_{-20.5(19\%)}$	$123.2^{+6.3(5\%)}_{-8.7(7\%)}$
full off-shell ($\mu_0 = H_T/3$)	$115.1^{+30.5(26\%)}_{-22.5(20\%)}$	$124.4^{+4.3(3\%)}_{-7.7(6\%)}$
NWA $(\mu_0 = m_t + m_W/2)$	$106.4^{+27.5(26\%)}_{-20.3(19\%)}$	$123.0^{+6.3(5\%)}_{-8.7(7\%)}$
NWA $(\mu_0=H_T/3)$	$115.1^{+30.4(26\%)}_{-22.4(19\%)}$	$124.2^{+4.1(3\%)}_{-7.7(6\%)}$
$\mathrm{NWA}_\mathrm{LOdecay}~(\mu_0=m_t+m_W/2)$		$127.0^{+14.2(11\%)}_{-13.3(10\%)}$
$\mathrm{NWA}_\mathrm{LOdecay}~(\mu_0=H_T/3)$		$130.7^{+13.6(10\%)}_{-13.2(10\%)}$

Results for various approaches for modelling of top quark production and decays

- Complete top-quark offshell effects ⇒ 0.2%
- NLO QCD corrections to top-quark decays ⇒ 3% for fixed scale ⇒ 5% for dynamical scale
- Theoretical uncertainties are similar for off-shell case and NWA ⇒ 6% - 7%
- For NWA_{LOdecay} ⇒ Rise up to 10% 11%

ttW with dynamical scale

$pp \rightarrow e^+ \nu_e \, \mu^- \bar{\nu}_\mu \, b\bar{b} \, e^+ \nu_e @ \, LHC_{13TeV}$

Bevilacqua, Bi, Hartanto, Kraus, Worek '20

- Top-quark off-shell effects 30% - 70%
- Large discrepancies between full NWA description & NWA_{LOdecay}
- Differences also in regions currently scrutinised by ATLAS & CMS experiments

ttZ ($Z \rightarrow \nu \nu$) with dynamical scale

- Searches of new physics $\Rightarrow t\bar{t} + p_T^{miss}$
- New physics observables $\Rightarrow p_T^{miss}, \cos_{\ell\ell}, \Delta \phi_{\ell\ell}, \Delta y_{\ell\ell}, H_T, E_T$

Bevilacqua, Hartanto, Kraus, Weber, Worek '19

HELAC-NLO

- Uncertainties reduced when going from LO to NLO
- Substantial nonflat K-factors

ttZ ($Z \rightarrow \nu \nu$) with dynamical scale

- Searches of new physics $\Rightarrow t\bar{t} + p_T^{miss}$
- New physics observables $\Rightarrow p_T^{miss}, \cos_{\ell\ell}, \Delta \phi_{\ell\ell}, \Delta y_{\ell\ell}, H_T, E_T$

 $e^+\nu_e\,\mu^-\bar{\nu}_\mu\,b\bar{b}\,\bar{\nu}_\tau\nu_\tau$ [®] LHC_{13TeV}

HELAC-NLO

- Reducible and irreducible backgrounds
- *tt* production process does not exhibit long enough tails in *p_T^{miss}*
- Might impact exclusion limits

Summary

- Proper modeling of top quark production & decay essential already now in presence of inclusive cuts:
- NNLO QCD corrections to *tt* in NWA (di-lepton decay channel)
- NLO QCD corrections to *ttV* (top quarks in di-lepton channel)
 - Corrections to production & decays ⇒ NLO *tt* spin correlations
 - Possibility of using kinematic-dependent $\mu_R \mathcal{E} \mu_F$ scales
 - Complete off-shell effects for top quarks
- Even more important for:
 - Exclusive cuts & High luminosity measurements
 - New Physics searches & Might impact exclusion limits
 - SM parameter extraction
- Top quarks play important role in virtually every LHC analysis ⇒ *SM & BSM*
- Lots of data, sophisticated analyses, precision measurements
 ⇒ Should be compared to state-of-the-art theoretical predictions
- Our full off-shell results for *tt, tty, ttZ, ttW*
 - Stored ⇒ *Ntuples Files* ⇒ *Les Houches & ROOT Files*

Backup Slides

$$e^+
u_e \mu^- ar{
u}_\mu b ar{b} \gamma \ @ \ {
m LHC}_{13{
m TeV}}$$

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

- $n = 15 \rightarrow$ boundaries outside which effects of Γ_t in BW propagator < 1%
- DR region is set to for $m_t = 173.2 \ GeV$

 $M(t) \in (152.9, 193.5) \text{ GeV}$ $M(\bar{t}) \in (152.9, 193.5) \text{ GeV}$

Contributions at the integrated cross section level for these 3 regions

$$\sigma_{\rm DR}^{\rm NLO} = 6.57~{\rm fb}\,, \qquad \qquad \sigma_{\rm SR}^{\rm NLO} = 0.91~{\rm fb}\,, \qquad \qquad \sigma_{\rm NR}^{\rm NLO} = 0.02~{\rm fb}$$

- DR contribution to full $\sigma_{tty} \rightarrow 88\% \rightarrow$ SR comprises 12% \rightarrow NR only 0.5%
- Should we instead use *n* = 5

$$\sigma_{\rm DR}^{\rm NLO} = 4.82$$
 fb, $\sigma_{\rm SR}^{\rm NLO} = 2.50$ fb and $\sigma_{\rm NR}^{\rm NLO} = 0.18$ fb