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@ OCD factorisation

® The ‘master formula’ for LHC observables:
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Parton Distribution Functions Partonic cross section
non-perturbative; computable in perturbation theory
describe structure of the proton as collisions between quarks and gluons
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A = scattering amplitude




@ Scattering amplitudes

o A computed from Feynman diagrams:
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= Fach diagram translates into an analytic formula.

= Perturbative expansion ~ expansion 1n number of loops.

® Probabilities are related to the square of the amplitude:

Proba ~ |A|* = A A* =




@ Anatomy of higher orders

® Next-to-LO (NLO):

® Icading order (LO):

]
Y ] Y

—— MWW WWWW——

VWW——

Y

WWWL——

Virtual

—— W >

YWV

_|_

—— MWW WWE——

Real

Individually divergent, but sum 1s finite.

® Next-to-next-to-LO (NNLO):
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@ Anatomy of higher orders

® In the rest of the talk: I focus (mostly) on virtual contributions.

® Virtual corrections require the integration S
over momentum of unresolved particle. / d°k k

® State of the art:

<

= | loop: usually doable.
= 2 loops:gg —gg, ete” = qqg ~2000-05
Since ~2015: ¢7 = VV' gg— HH@m) gg— tt(mm)

99 —9ggg gg —ggV

= 3 100p / N3LO:
Since ~2015: gg = H gg—HH bb— H VBF

qq — " qq — W



@ Anatomy of higher orders

® Step l: Sort the Feynman diagrams into (scalar) integral tamilies.

® Step 2: Find a basis of master integrals for each family.

[ Tkachov; Chetyrkin,

= [ntegration-by-parts (IBP) relations: Tkachov: Laporta; ...]

/chl-ci ! ) =0
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® Step 3: Evaluate the master integral (e.g., diff. egs., Feynman

parameters, etc.).



[@ Anatomy of higher orders

® Step l: Sort the Feynman diagrams into (scalar) integral tamilies.

® Step 2: Find a basis of master integrals for each family.
e ~

Algebraic complexity (‘bookkeeping of algebraic expressions’):

= Many scales, huge algebraic expressions.

= Huge linear systems to solve (1.000.000’s of equations).
N _

® Step 3: Evaluate the master integral (e.g., ditf. egs., Feynman
parameters, etc.).

] Analytic complexity (‘doing the integrals’):
= What kind of tunctions?

= How to analytically continue or evaluate them?
N )




@ Anatomy of higher orders

Language of loop integrals

Language of algebraic

geometry



@) Algebraic geometry

® Algebraic geometry ~ Study of polynomial equations.

ar + by +c=0 - Straight line
x2 _I_ y2 — R2 - Circle Alge.br:alc
varieties
2 2 2
S - Ellipsoid

a? b2 c2

® Period ~ Integral of a rational function over domain specified by
polynomials.

Examples:

d
/ drdy =m / o log 2
x2+4+y2<1 1<z<z &



@) Algebraic geometry
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Rational function

= Feynman integrals are periods! [Bogner, Weinzierl]

® New developments over the last 10 years:

= We can use 1nsights from algebraic geometry to compute
Feynman integrals.

= Many of these 1deas were originally discovered in the
context of scattering amplitudes in N=4 Super Yang-Mills.



@) Algebraic geometry

® There was (and still 1s) translation work to be done!

O Examples:

“The de Rham cohomology groups of an algebraic

variety are finite.”

“The number of master integrals 1s finite.”

“Feynman integrals define families of periods, and are
naturally equipped with a Gauss-Manin connection.”

“Master integrals satisty a system of first-order linear

)

ditferential equations.’



Algebraic geometry

&

® Algebraic complexity:

= Structure of integrand (=rational functions)?

= Bookkeeping of algebraic expressions?

= Decomposition into a basis (master integrals)?

® Analytic complexity:
= What kind of functions do appear?

= Algebraic and analytic properties of these functions?

= Numerical evaluation?



Algebraic complexity

&

® One-loop computations are considered a solved problem (at least

conceptually).

® Important ingredient: Every one-loop integral in 4D can be
decomposed into integrals with only a few propagators:

1T A O O

® Coefficients can be determined from unitarity.

= Unitarity/Optical theorem:

Im:O:EZ:/d(I)



Algebraic complexity
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® Key idea: Use unitarity to reduce loop computation to tree

computation.

ﬁ = Z;di' . '+cA+bi-O-+aiQ+R

box coethcient ~ Product of four tree amplitudes

® Computation of integral coethcients reduced to a tree-level

[ Bern, Dixon, Dunbar, Kosower]

computation!

® Ossola-Papadopoulos-Pittau (OPP) & Giele-Kunszt-Melnikov
(GKM): Parametrise loop integrand and fix coetficients with

unitary cuts.

® There was no immediate extension beyond one loop.



Algebraic complexity

&

® Cuts/discontinuities ~ multi-variate residue calculus.

ot -m?) LD )= [ se)6)
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® Breakthrough: use 1dea from calculations in polynomial rings to
obtain parametrisation of loop integrand.

| Kosower, Gluza; Papadopoulos; Larsen, Yang; Ita; ...]

= Similar in spirit to OPP / GKM at one-loop.

® Recently there was a first public code (CARAVEL) for numerical
unitarity at two loops.

[Abreu, Dormans, Febres-Cordero, Ita, Kraus, Page, Pascual, Ruf, Sotnikov]



D)  Algebraic complexity

® We know all integrals needed for 5-parton scattering!

[ Gehrmann, Henn, Lo Presti; Papadopoulos, Tommasini, Wever; Gehrmann, Henn,

Wasser, Zhang, Zoia; Chicherin, Sotnikov]

O Two-loop results for 2-to-3 scattering are within reach!

= All planar two-loop amplitudes for 3-jet production.

[Abreu, Dormans, Frebres Cordero, Ita, Page, Sotnikov]

= Special helicity configuration beyond planar limat.
[ Badger, Chicherin, Gehrmann, Heinrich, Henn, Peraro, Wasser, Zhang, Zoia]

= [irst steps towards W+2j at two loops.

[ Bayu Hartanto, Badger, Bréannum-Hansen, Peraro; see also Canko, Papadopoulos, Syrrakos]

(2)[N?]/A(norm) 6_4 6_3 6_2 6_1 60
(13’, 23’, 3+, 4+ 5+) 0 0 —5.000000000 —29.38541207 —62.68413553
(19_, 23’, 3+ 4+ 5+) 0 0 —5.000000000 —42.33840431 —159.9778589
(19_, 29 ,3+ 4+ 5+) 12.50000000  84.83123596 243.4660216 301.9565843 —152.0528809
(19_, 23_, 4+ 5+) 12.50000000  84.83123596 269.4635002 551.6251881 984.0882231

[Abreu, Frebres Cordero, Ita, Page, Sotnikov]



@  Algebraic complexity

® Mathematical interpretation of IBPs

/alchi ! ) =0
oki \ D" .. DI

= [BPs ~ find relations among integrand up to total derivatives.

= de Rham cohomology: wi ~ wy & wi —wy = dn

® Novel approach: Use (twisted) de Rham cohomology to perform
decomposition into master integrals.

= Cohomology groups = vector space of Feynman integrals.
= Master integrals = of this vector space.

= [ntersection pairing = ‘scalar product’ on this vector space.

[ Mastrolia, Mizera; Frellesvig, Gasparotto, Laporta, Mandal, Mastroha, Matiazzi, Mizera]|



@ Analytic complexity

® Unitarity implies that amplitudes are multi-valued functions:

® One-loop integrals:

“dt
log z = " Lis (2 / —logl—t
1

d Multlple polylogarlthms extension to two- loop mtegrals
with massless partons.

= Well understood, thanks to algebraic geometry!

[ Goncharov; Brown; Goncharov, Spradling, Vergu, Volovich; CD; Panzer; ..

]



@) Analytic complexity

® Large classes of loop integrals can be expressed in terms of

lyl ithms.
polylogarithms G(0: 2) = log 2
g G(ay;z) = log <1 — &i)
G(al,...,an;z):/ G(ag,...,an;t) 1
0o t—a G(0,1;2) = —Lia(2)

Weight = M = # Integrations

[ Poincaré; Kummer; Lappo-Danilevsky; Goncharov; ...]

® Related to active research in pure mathematics! [cf. Brown; Goncharov; ...)

® Polylogarithms satisty many identities:

2

= FExample: Liy(1— 2) = —Liy(2) — log(1 — z) log z + % (Euler]

Why should I care...?



@ Analytic complexity

1. To compute integrals:

“ dt 1-|—t
o log
141
/ —log (1+1) / —log (1—1 log1+t log(1+4t) —log(1 —t)
. . dt
— Liy(—2) + Lis(2) LIQ(Z):—/ T log(1 1)
0

= Jdentities between special functions are important when
computing integrals.



@ Analytic complexity

1. To compute integrals:

2. To simplity expressions / evaluate amplitudes numerically:
= Mathematica does not know G(0,a,b;1) ...

= ... but it does know logz and Li,(z)!

Liz (“(al__bb)> + Lis (Z:i) ~ Lis (bfa) + Lis (%) + Lig(1 — b)
+log (1 _ %) [Li2 (“S:?) ~ Liy <Z - i) ~ Lig(1 — b)]
—% log® (a“_bb> + %logQ (1 _ %) [— log (Z:i) +log <(aa__1b)b> _ logb]

b 1 2
—W—log< - >+—log3b—|—%logb

6

(a,0) =(1.2,1.1) — — 0.490485 . ..



@) Analytic complexity

1. To compute integrals:
2. To simplify expressions / evaluate amplitudes numerically:
3. To discover new structures in QFT:

Example: ‘Principle maximal transcendentality’

= An L loop amplitude in N=4 Super Yang only contains
polylogarithms of ‘transcendentality’/weight 2L.
5 S 272

Afll) ~ %log g + T log(_l) — T Weight: 21, = 2

[ Kotikov, Lipatov]

= In other theories: weight bounded by 2L.

= Sometimes (but not always) the maximal weight

term 1s 1dentical between N=4 SYM and QCD!



@ Analytic complexity

O Polylogarithms form a Hopf algebra. [Goncharov; Brown]

= Algebra: Vector space with an operation that allows one
to ‘fuse’ two elements into one (multiplication).

= (Coalgebra: Vector space with an operation that allows
one to break one element apart (coproduct A).

® A Hopf algebra 1s
= at the same time an algebra & a coalgebra.

= such that the product and coproduct are compatible
Ala-b) = A(a) - A(b)

= plus some other properties.



@ Analytic complexity

® Examples:

A(logz) =logz® 1+ 1®logz
A(Liz(2)) = Liz(2) ® 1 + 1 ® Lis(z) — log(1 — z) ® log z
® Example: T = —Lis(z) — log(1 — 2) log 2
Can this simplified?
AT)=TR1+1T+ A(T)
A(T) =log(l — 2) ®@log z — [log(1l — 2) ® log z + log z @ log(1 — 2)]

= —log z ® log(1 — 2)
— A/(ng(l — Z))

2

= At 2=0: T:—Lig(z)—log(l—z)logz:Lig(l—z)—%



), N3LO cross sections
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@ Beyond polylogarithms

® Starting from two loops: new functions arise!

® Prototype example: the massive sunrise graph. —

mi
TS
N/

= Closely related to elliptic integral:

1
K( )\) p— dﬂj [Sabry; Broadhurst; Bauberger, Berends, Bohm, Buza;
0 \/ ( 1 — an) (1 —\ 332) Catfo, Czyz, Laporta, Remiddi; Laporta Remiddi]
= No closed analytic result since 60’s.

® Breakthrough in 2013: The sunrise graph evaluates to a
dilogarithm on an elliptic curve! [Bloch, Vanhove]



@) Elliptic Curves

® FElliptic curve ~ set of points (z,y) such that

y =1 —-2*)(1-X2?) << y==+/(1-22)(1—-\z2)
VN
/ Kj i o /O V(1 =2?)(1 - A2?)

= Flliptic curves are important in algebraic geometry, number

theory, cryptography, string theory, ...

® [Elliptic polylogarithms are very new mathematics: original math
literature from 2010! [Brown, Levin]



@ Elliptic Feynman integrals

” ms

tt e self-energy ti, v, etc.
m
EW form factor p-parameter g9 —~ H

[ Bloch, Vanhove; Adams, Bogner, Chaubey, Schweitzer, Weinzierl; Brédel, CD,
Dulat, Marzucca, Tancredi, Penante; Hiddings, Moriello; ...]



@) The rho parameter

® Example: the rho parameter at 3 loops with quark-mass
dependence.

= Known numerically (Grigo, Hott, Marquard,

Steinhauser; see also Bliimlein, de Freitas, van Hoeyj,

Imamoglu, Marquard].

® Integrals that were unknown analytically:

) ) ot

D:2—2€ D—2—2€ D =4—2¢



&

® These integrals can be evaluated in terms of the same class of

The rho parameter

functions are the sunrise and banana graphs.

[Abreu, Becchetti, CD, Marzucca; see also Bliimlein, de Freitas, van Hoeilj, Imamoglu, Marquard]

= [terated integrals of Eisensteln series.

- Analytic continuation and numerical evaluation of these

functions well understood. [CD, Tancredi]

t

02

1.0

3G pmy as (1) as(p) )’
op = L0 [ 5O p TR M)y (2 5D 4 O (p)?
P = Toniv3 < - (avs(p)”)

[Abreu, Becchetti, CD, Marzucca]



@ Pure Mathematics

® Can physics inspire new results in mathematics?

® Consider the 1dentity:

2
Lis(1 — 2) = —Lis(2) — log(1 — z) log z + —

6

® Version of the dilogarithm (‘Bloch-Wigner dilogarithm’)

i 1
D(z) =Im |Lis(2) + 5 log |z|* log(1 — 2)

with the properties

- D(2) 1s single-valued (i.e., no branch cuts).

- D(z) satishies ‘clean’ 1dentity, e.g., D(1 — 2) = —D(2).



@2\‘ Clean 1dentities

® Does this generalise to arbitrary multiple polylogarithms?

O Example:

= Goal: single-valued functions C(0,a,b;1)and C(0,0,1;a)
such that (Liz(a) = —G(0,0, 1;a))

C'(0,a,b;1) =

a—>b

_ 1 —
:C<0,0,1;a ab) —I—C(O,O,l;L) —C’(0,0,l;—b> —C’(0,0,l;%) — (C(0,0,1;1 —0)

a—>b a—>b



o) Clean 1dentities

C(0,a,b:1) = ;G(b 1)G (0,3) Gla, b) — %G(b 1)G (0,5) Gla,b) - %G(O,a)G(b,l)G (a,5) + %G(O,b)G(b, 1)@ (a,b)

- %G(b, )G (0,a) G (a,5) — %G(b, )G (0,a,5) + %G(b, 1)@ (a,0,5) - %G(O,a) G (a,1) G(b, a)

26 (0.0) G (5,1) Gla,b) + 5G0,0)G (5,1) G (a,5) + 36 (0,8)C (5,1) G (a,5)

— %G(O,a)G(a, 1)G (b,a) — %G(O,a, 1)G (b,a) + %G(O,b, 1)G (a,b) — %G (a,1) G(0,b,a)
26 (0,81)G(b,0) - 26 (0,a,1)G (b.a) + 3G (b,1) G (0,,5) + 56 (0,5,1) Gla, )
4 %G (0,5,1) G (a,b) — %G (a,1)G (0,5,a) + %G (5,1) G(a,0,b) - %G (a,1)G(b,0, a)

- %G (0,a) G(b,a, 1) + %G(O, a)G (b,a,1) + lc; (0,a) G (b,a,1) + %G(O, a)G (@,b,1)
—G(O,d)G(a,b,1)+EG(O,a)G(a b,1) + -G (0,a)G (a,b,1) — 1G(a 1)G (b,0,a)
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G (0,b,a,1) — (b,@,0,1) —

Q @

(b,0,a,1) +

~ W, WN

1
G(b,1)G(a,0,b) — gG(O,a, 1)G(b,a) + §G(O,b, 1)G(a,b) — —G’(O a)G(b,a, 1)+
2
G(0,b,a,1) — gG(b,O,a, 1)

Wl W~ WINWIEW

1
C(0,0,1:0) = ~G(0,0,a)G (1,d) — %G(O, 1.a)G (0,a) — %G(O,a)G (0,1,) + G0, )G (1,0,a)

1 1 1
G (0,1,0,a) + 3G (1,0,0,a) + 3G(0,0,1,a) - 5G(0,1,0,a)



@ Clean 1dentities

® Construction i1s totally algorithmic! [Charlton, CD, Gangl]

= Based on the Hopt algebra and the coproduct of
polylogarithms.

® Can proof that the resulting functions will satisty all relations of
polylogarithms, but in a clean version!

® Joint-venture between math and physics!

= Insight & experience from physics played a crucial role!

® Applications to physics..?



@ Conclusion

@ Language Of IOOP integrals — Language Of algebraic geometry

® Taming the algebraic complexity:

= [deas from algebraic geometry lead to new ways to
develop a “unitarity program” beyond one loop.

= Recent application: 2-to-3 scattering at 2 loops.

® Taming the analytic complexity:

= The simplest class of functions (polylogarithms) are now
under very good control.

= New insight into elliptic Feynman integrals.



