B3a: Dark sectors at the LHC

Felix Kahlhoefer Annual Meeting of the SFB TRR 257 University of Siegen 7 October 2020

Who is B3a?

- Since 01/2019: Elias Bernreuther, Felix Kahlhoefer, Michael Krämer, Tilman Plehn
- **01/2019 06/2019:** Saniya Heeba
- **01/2019 07/2020:** Patrick Tunney
- Since 10/2020: Alessandro Morandini
- **Further contributions:** Juliana Carrasco Mejia, Thorben Finke, Hanna Mies, Alexander Mück, Peter Reimitz

• Talk based on:

arXiv:1907.04346, arXiv:1908.09834, arXiv:1911.11147, arXiv:2005.13551, arXiv:2006.08639 and work in progress

What are dark sectors?

- We know that the Universe is mostly made of dark matter (DM), but its nature is completely unknown
- Given the complexity of visible matter, it is hardly plausible that DM should be much simpler
- What if the DM particle is part of a larger dark sector with various new states and new interactions?

• Challenge: How can we deal with such complexity without **losing all predictivity**?

Guiding principle: Early Universe cosmology

 The one thing we know about dark matter is how much there is in the Universe:

 $\Omega h^2 = 0.1199 \pm 0.0027$

• Any model of dark matter must provide a mechanism to **explain this number**

Possible route:

- 1) Take inspiration from the Standard Model (SM) and construct DM models in **analogy**
- 2) Require consistent cosmology that **reproduces the observed DM relic abundance**
- 3) Explore **phenomenological consequences** and constrain parameter space

Simplest example: WIMPs

• Assume that DM has interactions that are similar in strength to weak interactions

 DM particles that obtain their relic density in this way are called Weakly Interacting Massive Particles (WIMPs)

Where Is My Particle?

- **Central prediction:** WIMPs should be observable in laboratory experiments
- The non-observation of DM signals mounts substantial pressure on the WIMP idea
- Most WIMP models are still viable, but parameter space is getting tight!
- Well-motivated to question underlying assumptions and consider alternative dark matter models

by Saniya Heeba

Strongly-interacting dark sectors

• What if the interactions within the dark sector are much stronger?

• DM relic abundance determined by the interaction rates within the dark sector

Feebly-interacting dark sectors

• What if interactions between DM and the SM are extremely weak?

- Part 1: LHC searches for strongly interacting dark sectors
- Part 2: Phenomenology of dark sectors with feeble interactions
- Part 3: New ideas for WIMPs

Part 1: Strongly-interacting dark sectors

- Consider a dark sector that **resembles QCD**
- For energies below some scale Λ_d the dark sector confines, giving rise to massive **dark pions**
- If there is an additional symmetry some (or even all) of the dark pions are stable and make excellent DM candidates

- Other mesons in the dark sector (such as the vector mesons analogous to SM ρ mesons) are generally unstable and decay into SM states
- The **relic density** of dark pions is then determined by the **conversion rate** of stable into unstable mesons

Phenomenology: LHC

 If dark quarks can be produced at the LHC, we expect fragmentation and hadronisation in the dark sector

- Result: dark shower containing 10– 20 dark mesons
- Most dark mesons (on average 75%) are stable and will escape from the detector
- Any dark ρ^o meson will decay into SM particles and give rise to QCD jets
- **Result:** Semi-visible jets

Bernreuther, FK, Krämer, Tunney, arXiv:1907.04346

Finding dark showers with machine learning

- Deep neural networks are known to show excellent performance in the tagging of boosted top jets
- **Example:** Convolutional neural networks (CNNs) acting on jet images, i.e. histograms of the $p_{\rm T}$ distribution in pseudo-rapidity η and azimuthal angle φ

• **Problem:** Dark showers look much more similar to ordinary QCD jets than boosted top jets

Catching dark showers with graph nets

- Conventional methods, such as Lorentz-Layer (LoLa) networks or CNNs have difficulties identifying dark showers
- **Promising new approach:** Dynamic graph convolutional neural networks (DGCNN) acting on a "point cloud", i.e. an unordered set of jet constituents that are grouped in a dynamic way by the network

- Main problem: Requires supervised training, i.e. labeled data (signal / background)
- To reduce model-dependence one can train on mixed samples (containing e.g. semivisible jets with different meson masses)

Bernreuther, Finke, FK, Krämer & Mück, arXiv:2006.08639

Enhancing LHC sensitivity for dark showers

- We can integrate the deep neural network trained to identify semi-visible jets as a "dark shower tagger" into existing and upcoming analyses of LHC data
- Example: searches for jets + MET ("monojet" searches)
- At 30% signal efficiency, backgrounds can be suppressed by more than two orders of magnitude!

Emerging jets

- For small couplings, the p decay length is comparable to the **size of the detector**
- Consequence: QCD jets originating from displaced vertex (so-called **emerging jets**)
- Difficult to reconstruct both the position of the displaced vertex and the mass of the p meson (needed for background suppression)
- New analysis strategy: Include charged tracks with small impact parameter to probe unexplored regions of parameter space

Bernreuther, FK, Krämer & Tunney, in preparation

15

Part 2: Dark sectors with feeble interactions

 Simplest example: a dark fermion x coupled to a dark photon A' (like QED but with much smaller couplings)

16

Part 2: Dark sectors with feeble interactions

 Simplest example: a dark fermion x coupled to a dark photon A' (like QED but with much smaller couplings)

after the Higgs Discovery

17

Dark photon searches

Projections

Large unexplored parameter space!

Many plans to improve sensitivity with fixed-target experiments and e⁺e⁻ colliders!

Heeba & FK, arXiv:1908.09834

Light Dark Matter Scattering in LHC Detectors

• **Similar idea:** Ultra-light DM particles produced at the LHC (for example in Higgs decays) scatter inelastically off detector material, producing displaced recoil jets

20

Part 3: New WIMP ideas

- Interesting possibility: DM has typical WIMP interactions but a smaller mass (GeVscale or below)
- **New challenge:** Accurate prediction of the particle spectra produced by DM annihilations (needed e.g. for the evaluation of CMB constraints)
- **Herwig4DM:** Simulation of hadronic final states for annihilation of sub-GeV DM with updated fits to electron–positron data and several new final states

Plehn, Reimitz & Richardson, arXiv:1911.11147

Global fits of sub-GeV DM

- **Aim:** Combine constraints from cosmology and laboratory experiments to perform a global analysis of sub-GeV DM with a dark photon mediator
- Key result: If annihilations are resonantly enhanced (m_{DM} ≈ m_A/2), there is large viable parameter space within reach of future experiments

Bernreuther, Heeba & FK, in preparation

22

t-channel mediators

- Another exciting direction: WIMP models with t-channel mediators
- Highly relevant **NLO corrections** to LHC and (in)direct detection signatures
- Requires implementation of simplified models in various numerical tools (FeynRules, NLOCT, MG5_aMC, MadDM)

23

Constraints on t-channel mediators

• **First step:** Reinterpretation of existing SUSY searches with jets and MET in final state (e.g. ATLAS-CONF-2019-040)

• Outlook:

- Combine collider limits with (in)direct detection constraints
- Find ways to distinguish different models based on their signatures

Arina, Fuks, Heisig, Krämer, Mantani, Mawatari, Mies, Panizzi & Salko, in preparation

Conclusions

- Our ignorance about the nature of DM and the absence of DM signals in laboratory experiments motivates the exploration of more complex dark sectors
- We can build dark sectors in analogy to Standard Model phenomena and explore the implications for cosmology, in particular the DM relic density
- Strongly interacting dark sectors predict many exciting collider signatures such as semi-visible and emerging jets → new analyses strategies needed!
- Dark sectors with feeble interactions can be tested at the intensity frontier (fixedtarget experiments, B factories, ...)
- WIMPs are not dead! Many exciting ideas regarding sub-GeV DM and models with tchannel mediators

