

A2b: Vector-Boson Scattering and Multi-Boson Production

Unitarization exemplified: A concrete model and its effective field theory

Jannis Lang, Stefan Liebler, Heiko Schäfer-Siebert, Dieter Zeppenfeld | 08.10.2020

KARLSRUHE INSTITUE OF TECHNOLOGY, INSTITUTE OF THEORETICAL PHYSICS

Outline

- 2 Toy Model and its EFT
- On-Shell Scattering
- 4 Full Analysis (VBFNLO)

Description of BSM effects in Vector-Boson Scattering (VBS)

- UV complete model
- Bottom-up EFT

EFT

$$\mathcal{L}_{EFT} = \sum_{d=6}^{\infty} \sum_{i} \frac{f_{i}^{(d)}}{\Lambda^{d-4}} O_{i}^{(d)} = \sum_{i} \frac{f_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \sum_{i} \frac{f_{i}^{(8)}}{\Lambda^{4}} O_{i}^{(8)} + \dots$$

$$= \frac{f_{WWW}}{\Lambda^{2}} \operatorname{Tr} \left(\hat{W}^{\mu}{}_{\nu} \hat{W}^{\nu}{}_{\rho} \hat{W}^{\rho}{}_{\mu} \right) + \dots$$

$$+ \frac{f_{T_{0}}}{\Lambda^{4}} \operatorname{Tr} \left(\hat{W}^{\mu\nu} \hat{W}_{\mu\nu} \right) \operatorname{Tr} \left(\hat{W}^{\alpha\beta} \hat{W}_{\alpha\beta} \right) + \dots$$

$$+ \frac{f_{M_{0}}}{\Lambda^{4}} \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] + \dots$$

$$+ \frac{f_{S_{0}}}{\Lambda^{4}} \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\mu} \Phi)^{\dagger} D^{\nu} \Phi \right] + \dots$$
(1)

- Deviations from the SM can rise with energy
- Finite range of validity

Description of BSM effects in Vector-Boson Scattering (VBS)

- UV complete model
- Unitarized bottom-up EFT
 - Cut-off, Clipping
 - Form-Factor
 - K-Matrix unitarization
 - T-Matrix projection (arxiv:1807.02512)
 - T_u-model (arxiv:1807.02707)
 - ...

Which unitarization should one use?

Description of BSM effects in Vector-Boson Scattering (VBS)

- UV complete model
- Unitarized bottom-up EFT
 - Cut-off, Clipping
 - Form-Factor
 - K-Matrix unitarization
 - T-Matrix projection (arxiv:1807.02512)
 - T_u-model (arxiv:1807.02707)
 - ...

Which unitarization should one use?

Any unitarization is better than no unitarization

Description of BSM effects in Vector-Boson Scattering (VBS)

- UV complete model
- Unitarized bottom-up EFT
 - \bullet T_u -model

Which unitarization should one use?

Any unitarization is better than no unitarization

Limits

How well does the unitarized EFT describe features of the UV complete model?

- Small deviations
- Resonances
- Threshold behavior

Limits

How well does the unitarized EFT describe features of a UV complete model?

- Small deviations: quite well
- Resonances:
 - Transverse scattering: not at all (arxiv:1807.02512)
 - Longitudinal scattering: Ideas (e.g. Inverse Amplitude Method arxiv:1808.04413)
- Threshold behavior: ?

Toy Model

Requirements

- Enhancement in transverse scattering
- Coupling only to vector bosons (and Higgs boson)
- Dimension-8 operators are dominant in the corresponding EFT (VBS is the most relevant channel)
- EFT is not ruled out (current limits on Wilson coefficients)

Toy Model

Requirements

- Enhancement in transverse scattering
- Coupling only to vector bosons (and Higgs boson)
- Dimension-8 operators are dominant int the corresponding EFT (VBS is the most relevant channel)
- EFT is not ruled out (current limits on Wilson coefficients)

Partice Contetn

- Massive fermionic and/or scalar SU(2)_L multiplets
- $SU(2)_L$ representation R specified by isospin J_R
- coupling only to gauge bosons via SU(2)_L gauge interaction
- Effects at one-loop level
- Charged loop particle lead to field strength tensors in EFT

Relevant Lagrangian in the $SU(2)_L$ limit

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} H)^{2} - \frac{m_{H}^{2}}{2} H^{2}$$

- $\frac{1}{2} \operatorname{Tr} \left(\hat{W}^{\mu\nu} \hat{W}_{\mu\nu} \right) + \frac{m_{W}^{2}}{2} \left(\sum_{a=1}^{3} W^{a}_{\mu} W^{a\mu} \right) \left(1 + \frac{H}{v} \right)^{2}$
+ $\bar{\Psi} \left(i \gamma_{\mu} D^{\mu} - M_{F} \right) \Psi + (D^{\mu} \Phi)^{\dagger} D_{\mu} \Phi - M_{S}^{2} \Phi^{\dagger} \Phi .$ (2)

- Fermionic coupling is not chiral
- Model coincides with the class of minimal dark matter models (e.g. arxiv:0512090 [hep-ph])
- Give contributions to vector boson propagators, three vector boson vertices and four vector boson vertices at 1-loop level

Loop Calculation and Renormalization

- Rewrite loop contributions in terms of Passarino-Veltman integrals
- \overline{MS} renormalization of the gauge boson fields and the coupling g, $\mu = M_F^2, M_S^2$

$$\delta_3 = -g^2 \Delta_\epsilon \left(\sum_F n_F \frac{T_F}{12\pi^2} + \sum_S n_S \frac{T_S}{48\pi^2} \right) , \qquad (3)$$
$$\delta_g = -\frac{1}{2} \delta_3 = \frac{g^2}{2} \Delta_\epsilon \left(\sum_F n_F \frac{T_F}{12\pi^2} + \sum_S n_S \frac{T_S}{48\pi^2} \right) , \qquad (4)$$

$$\Delta_{\epsilon} = \frac{1}{\epsilon} - \gamma_{E} + \log(4\pi), \tag{5}$$

$$T_R = \frac{1}{3} \left[J_R (J_R + 1)(2J_R + 1) \right], \quad C_{2,R} = J_R (J_R + 1).$$
 (6)

EFT

$$\begin{aligned} \mathcal{L}_{EFT} &= f_{WW} \operatorname{Tr} \left(\hat{W}^{\mu\nu} \hat{W}_{\mu\nu} \right) + \frac{f_{DW}}{\Lambda^2} \operatorname{Tr} \left([\hat{D}_{\alpha}, \hat{W}^{\mu\nu}] [\hat{D}^{\alpha}, \hat{W}_{\mu\nu}] \right) \\ &+ \frac{f_{WWW}}{\Lambda^2} \operatorname{Tr} \left(\hat{W}^{\mu}_{\ \nu} \hat{W}^{\nu}_{\ \rho} \hat{W}^{\rho}_{\ \mu} \right) + \frac{f_{D2W}}{\Lambda^4} \operatorname{Tr} \left([\hat{D}_{\alpha}, [\hat{D}^{\alpha}, \hat{W}^{\mu\nu}]] [\hat{D}_{\beta}, [\hat{D}^{\beta}, \hat{W}_{\mu\nu}] \right) \\ &+ \frac{f_{DWWW_0}}{\Lambda^4} \operatorname{Tr} \left([\hat{D}_{\alpha}, \hat{W}^{\mu}_{\ \nu}] [\hat{D}^{\alpha}, \hat{W}^{\nu}_{\ \rho}] \hat{W}^{\rho}_{\ \mu} \right) \\ &+ \frac{f_{DWWW_1}}{\Lambda^4} \operatorname{Tr} \left([\hat{D}_{\alpha}, \hat{W}^{\mu\nu}] [\hat{D}_{\beta}, \hat{W}^{\mu\nu}] \hat{W}^{\alpha\beta} \right) \\ &+ \frac{f_{T0}}{\Lambda^4} \operatorname{Tr} \left(\hat{W}^{\mu\nu} \hat{W}_{\mu\nu} \right) \operatorname{Tr} \left(\hat{W}^{\alpha\beta} \hat{W}_{\alpha\beta} \right) + \frac{f_{T_1}}{\Lambda^4} \operatorname{Tr} \left(\hat{W}^{\mu\nu} \hat{W}_{\alpha\beta} \right) \operatorname{Tr} \left(\hat{W}^{\alpha\beta} \hat{W}_{\mu\nu} \right) \\ &+ \frac{f_{T_2}}{\Lambda^4} \operatorname{Tr} \left(\hat{W}^{\mu}_{\ \nu} \hat{W}^{\nu}_{\ \alpha} \right) \operatorname{Tr} \left(\hat{W}^{\alpha}_{\ \beta} \hat{W}^{\beta}_{\ \mu} \right) + \frac{f_{T_3}}{\Lambda^4} \operatorname{Tr} \left(\hat{W}^{\mu\nu} \hat{W}^{\alpha\beta} \right) \operatorname{Tr} \left(\hat{W}_{\nu\alpha} \hat{W}_{\beta\mu} \right) . \end{aligned}$$

Matching

- Matching for $p_i \cdot p_j \ll M^2$
- Propagator corrections

$$f_{WW} = \sum_{F} n_{F} \frac{T_{F}}{24\pi^{2}} \left(\Delta_{\epsilon} + \log\left(\frac{\mu^{2}}{M_{F}^{2}}\right) \right) + \sum_{S} n_{S} \frac{T_{S}}{96\pi^{2}} \left(\Delta_{\epsilon} + \log\left(\frac{\mu^{2}}{M_{S}^{2}}\right) \right) , \qquad (8)$$

$$\frac{f_{DW}}{\Lambda^{2}} = \sum_{F} n_{F} \frac{T_{F}}{120\pi^{2}M_{F}^{2}} + \sum_{S} n_{S} \frac{T_{S}}{960\pi^{2}M_{S}^{2}} , \qquad (9)$$

$$\frac{f_{D2W}}{\Lambda^{4}} = \sum_{F} n_{F} \frac{T_{F}}{1120\pi^{2}M_{F}^{4}} + \sum_{S} n_{S} \frac{T_{S}}{13440\pi^{2}M_{S}^{4}} . \qquad (10)$$

Matching

Three gauge boson vertex

$$\frac{f_{WWW}}{\Lambda^2} = \sum_{F} n_F \frac{13T_F}{360\pi^2 M_F^2} + \sum_{S} n_S \frac{T_S}{360\pi^2 M_S^2} , \qquad (11)$$

Four gauge boson vertex

...

$$\frac{f_{T_0}}{\Lambda^4} = \sum_F n_F \frac{(-14C_{2,F}+1) T_F}{10080\pi^2 M_F^4} + \sum_S n_S \frac{(7C_{2,S}-2) T_S}{40320\pi^2 M_S^4}, \quad (12)$$

$$\frac{f_{T_2}}{\Lambda^4} = \sum_F n_F \frac{(196C_{2,F}-397) T_F}{25200\pi^2 M_F^4} + \sum_S n_S \frac{(14C_{2,S}-23) T_S}{50400\pi^2 M_S^4}. \quad (13)$$
...

Matching

- Propagator and three gauge boson vertex corrections: J³
- Four gauge boson vertex corrections: J⁵
- Dimension-8 operators more dominant for larger J

Choice of M and J

Restrictions on J and M

- Dim. 8 operators are dominant
- Perturbative unitarity
- Sizalbe but not yet excluded deviation from SM

Experimental Constraints

Value pairs below the curves would be disfavored by experimental analysis.

Perturbative Unitarity, Partial Wave Coefficients

On Shell Scattering

The cross sections are calculated with the total amplitude squared, only the Full Model (int) result (blue, dashed) is obtained using the typical NLO expansion of the cross section.

On Shell Scattering

The cross sections are calculated with the total amplitude squared, only the Full Model (int) result (blue, dashed) is obtained using the typical NLO expansion of the cross section.

On Shell Scattering

Depending on the process:

- Constructive or destructive interference between different T-operators
- Constructive or destructive interference between the SM and the toy model

Good agreement between EFT and toy model up to 1 ${\rm TeV}$ Dim-6 operators are negligible

Full Analysis (VBFNLO)

Process:

 $pp \rightarrow W^{\pm}Z_{jj} \rightarrow l'^{\pm}\nu_{l'}l^{\pm}l^{\mp}jj$ Cuts:

$$\begin{aligned} p_T^{l'}, p_T^{l} &> 20 \,\text{GeV} \,, & |\eta^e| < 2.5 \,, & |\eta^{\mu}| < 2.4 \\ |m_{ll} - m_Z| &< 15 \,\text{GeV} \,, & m_{3l} > 100 \,\text{GeV} \,, & p_T^{\text{miss}} > 30 \,\text{GeV} \\ |\eta^j| &< 4.7 \,, & p_T^j > 50 \,\text{GeV} \,, & |\Delta R(j,l)| > 0.4 \\ m_{jj} &> 500 \,\text{GeV} \,, & |\Delta \eta_{jj}| > 2.5 \,, & \max(z_l^*) < 1.0 \,. \end{aligned}$$

$$(14)$$

The number of events are shown for an integrated luminosity of $137 \, \text{fb}^{-1}$.

Full Analysis (VBFNLO)

Process:

 $pp \rightarrow W^{\pm}W^{\pm}jj \rightarrow I^{\pm}\nu_{l}I'^{\pm}\nu_{l'}$ Cuts:

$$\begin{aligned} p_T'', p_T' > 20 \,\text{GeV}\,, & |\eta^e| < 2.5\,, & |\eta^\mu| < 2.4\\ |m_{II} - m_Z| < 15 \,\text{GeV}\,, & m_{II} > 20 \,\text{GeV}\,, & p_T^{\text{miss}} > 30 \,\text{GeV}\\ |\eta^j| < 4.7\,, & p_T^j > 50 \,\text{GeV}\,, & |\Delta R(j,I)| > 0.4\\ m_{jj} > 500 \,\text{GeV}\,, & |\Delta \eta_{jj}| > 2.5\,, & \max(z_I^*) < 0.75\,. \end{aligned}$$

The number of events are shown for an integrated luminosity of $137 \, \text{fb}^{-1}$.

Conclusion

Toy Model:

- Additional SU(2)_L multiplets with large isospin J
- Coupling only to vector bosons (impact on VBS)
- Constructive (ZZ) and destructive (ssWW, WZ) interference with SM
- Destructive interference only visible in m(VV) distribution, not in experimentally accessible m_t(VV) distribution
- Even our exotic choice of $J_S = 6$ ($J_F = 4$) and M = 600 GeV is compatible with SM

Conclusion

EFT:

- Dimension 8 operators can be important than dimension 6 operators (large J)
- Destructive interference between different O_T operators (single operator bounds overly constrain the model)
- Good agreement with Toy up to 1 TeV for $M = 600 \text{ GeV} = \Lambda_{EFT}$
- Large deviations between EFT and the toy model at the pair production threshold (1.2 TeV)
- A unitarization improves the high energy behavior of the EFT but not in the threshold region

Backup

Full Analysis (VBFNLO)

Process:

 $pp \rightarrow ZZjj \rightarrow I'^{\pm}I'^{\mp}I^{\pm}I^{\mp}jj$ Cuts:

$$\begin{array}{ll} p_T^{l'}, p_T^l > 20 \, {\rm GeV} \,, & |\eta^e| < 2.5 \,, & |\eta^\mu| < 2.4 \\ |\eta^j| < 4.7 \,, & p_T^j > 30 \, {\rm GeV} \\ \Delta R(j,l)| > 0.3 \,, & m_{jj} > 400 \, {\rm GeV} \,, & |\Delta \eta_{jj}| > 2.4 \\ 40 \, {\rm GeV} < m_{ll}, m_{l'l'} < 120 \,. & (16) \end{array}$$

Jannis Lang, Stefan Liebler, Heiko Schäfer-Siebert, Dieter Zeppenfeld – A2b: Vector-Boson Scattering and Multi-Boson Production

08.10.2020 30/34

The number of events are shown for an integrated luminosity of $137 \, \text{fb}^{-1}$.

Drell-Yan

Figure: Estimation of the modification of Drell-Yan like four-fermion processes given by absolute square of the ratio of the one-loop resummed vector-boson propagator divided by the tree-level SM propagator.

$$\frac{f_{WWW}}{\Lambda^2} = \sum_F n_F \frac{13T_F}{360\pi^2 M_F^2} + \sum_S n_S \frac{T_S}{360\pi^2 M_S^2}, \quad (17)$$

$$\frac{f_{DWWW_0}}{\Lambda^4} = \sum_F n_F \frac{2T_F}{105\pi^2 M_F^4} + \sum_S n_S \frac{T_S}{1120\pi^2 M_S^4}, \quad (18)$$

$$\frac{f_{DWWW_1}}{\Lambda^4} = \sum_F n_F \frac{T_F}{630\pi^2 M_F^4} + \sum_S n_S \frac{T_S}{4032\pi^2 M_S^4}. \quad (19)$$

$$\frac{f_{T_0}}{\Lambda^4} = \sum_F n_F \frac{(-14C_{2,F}+1)T_F}{10080\pi^2 M_F^4} + \sum_S n_S \frac{(7C_{2,S}-2)T_S}{40320\pi^2 M_S^4}, \quad (20)$$

$$\frac{f_{T_1}}{\Lambda^4} = \sum_F n_F \frac{(-28C_{2,F}+13)T_F}{10080\pi^2 M_F^4} + \sum_S n_S \frac{(14C_{2,S}-5)T_S}{40320\pi^2 M_S^4}, \quad (21)$$

$$\frac{f_{T_2}}{\Lambda^4} = \sum_F n_F \frac{(196C_{2,F}-397)T_F}{25200\pi^2 M_F^4} + \sum_S n_S \frac{(14C_{2,S}-23)T_S}{50400\pi^2 M_S^4}, \quad (22)$$

$$\frac{f_{T_3}}{\Lambda^4} = \sum_F n_F \frac{(98C_{2,F}+299)T_F}{25200\pi^2 M_F^4} + \sum_S n_S \frac{(7C_{2,S}+16)T_S}{50400\pi^2 M_S^4}. \quad (23)$$