Higgs physics: recent developments

Gudrun Heinrich

Karlsruhe Institute of Technology

an artists's view of the Higgs boson *Sakkmesterke Shutterstock.com*

CRC Annual Meeting, 6.10.2020

Higgs-related questions

- Higgs properties (mass, CP, width)
- couplings to vector bosons and fermions → flavour physics neutrino masses
- Higgs potential (self-couplings)
- Higgs and the Universe (meta-stability, baryogengesis, portal to dark matter, ...)
- the only elementary scalar? compositeness?

Higgs-related questions

- Higgs properties (mass, CP, width)
- couplings to vector bosons and fermions → flavour physics neutrino masses
- Higgs potential (self-couplings)
- Higgs and the Universe (meta-stability, baryogengesis, portal to dark matter, ...)
- the only elementary scalar? compositeness?

The Higgs sector might be a window to physics at higher scales

Higgs couplings

How do we address these questions?

- precision measurements
- test specific BSM models
- EFT parametrisations of new physics effects

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + \sum_{d=6}^{\infty} rac{c_i}{\Lambda^{d-4}} \mathcal{O}_i$$

$$\Rightarrow (\sigma \times BR) = (\sigma \times BR)_{\rm SM} (1 + \Delta)$$

for typical energy scale E of measurement: $\Delta \sim \left(\frac{E}{\Lambda}\right)^2$

The SM as an effective field theory

$$\Delta \sim \left(\frac{E}{\Lambda}\right)^2$$

example Higgs production: typical energy scale $~E\sim v=0.25\,{
m TeV}$

$$\Rightarrow \Delta \sim (0.25)^2 \left(\frac{\text{TeV}}{\Lambda}\right)^2 \sim 0.06 \left(\frac{\text{TeV}}{\Lambda}\right)^2$$

 \Rightarrow to generate $\,\gtrsim$ 1% deviations need $\Lambda \lesssim 2.5\,{
m TeV}$

boosted Higgs, tails of distributions: $E \sim 1 \, {\rm TeV}$

$$\Rightarrow$$
 with $\Lambda = 2.5 \,\mathrm{TeV}$ we achieve $\Delta = 1/(2.5)^2 \simeq 16\%$

The SM as an effective field theory

$$\Delta \sim \left(\frac{E}{\Lambda}\right)^2$$

example Higgs production: typical energy scale $~E\sim v=0.25\,{
m TeV}$

$$\Rightarrow \Delta \sim (0.25)^2 \left(\frac{\text{TeV}}{\Lambda}\right)^2 \sim 0.06 \left(\frac{\text{TeV}}{\Lambda}\right)^2$$

 \Rightarrow to generate $\,\gtrsim$ 1% deviations need $\Lambda \lesssim 2.5\,{
m TeV}$

boosted Higgs, tails of distributions: $E \sim 1 \, {\rm TeV}$

$$\Rightarrow$$
 with $\Lambda = 2.5 \, {
m TeV}$ we achieve $\Delta = 1/(2.5)^2 \simeq 16\%$

 \Rightarrow off-shell measurements, tails of distributions very important!

precision

HL-HE YR, 1902.00134

projected uncertainties

gluon fusion

ttH

fixed order precision frontier

N3LO available for:

gluon fusion Higgs, bbH, Drell-Yan, VBF H, VBF HH, gluon fusion HH

	Drell-Yan	gluon fusion Higgs				
LO	1970	1978				
NLO	1978-80	1991 (HTL) 1995 (full mt)				
NNLO	1991	2002 (HTL) 2009-2020 (mass effects)				
N3LO	2020 Duhr, Dulat, Mistlberger	2015 (HTL, threshold exp.) Anastasiou, Duhr, Dulat, Herzog, Mistlberger 2018 (HTL) Mistlberger 2020 Das, Moch, Vogt partial N4LO				

aside: heavy top limit

• Higgs production in gluon fusion:

leading order already contains one loop (same for HH, HJ, HZ, ... in gluon fusion)

• many calculations of high perturbative order use "heavy top limit" (HTL)

- good approximation for inclusive Higgs production if rescaled with full Born
- not justified if top loops can be resolved (e.g. high energy tails of distributions) (in fact only justified below threshold, $E\lesssim 2m_t$)

example HH production: only valid for $250 \,\mathrm{GeV} \le m_{HH} \lesssim 350 \,\mathrm{GeV}$

heavy top limit

Jones, Kerner, Luisoni '18

("HEFT"=HTL)

fixed order precision frontier

	VBF Higgs	Higgs pairs gluon fusion				
LO	1979	1988				
NLO	1992 (structure func.approx.) 2003 (full)	1998 (HTL) 2016 (full mt)				
NNLO	2015	2013 (HTL) 2013-2020 (mass effects)				
N3LO	2016 Dreyer, Karlberg (VBF HH 2018)	2019 (HTL+mass effects) Chen, Li, Shao, Wang				

precision frontier

shift of focus:

at N3LO scale uncertainties under control, but need to address

- QCDxEW corrections
- massive quarks at higher orders
- PDF, α_s uncertainties, non-perturbative effects
- parton shower uncertainties

H in gluon fusion: uncertainties

$\delta(ext{scale})$	$\delta(ext{PDF-TH})$	$\delta(\mathrm{EW})$	$\delta(t,b,c)$	$\delta(1/m_t)$	$\delta(ext{PDF})$	$\delta(lpha_s)$
$^{+0.10}~{ m pb}$ $^{-1.15}~{ m pb}$	$\pm 0.56~{ m pb}$	$\pm 0.49~{ m pb}$	$\pm 0.40 \text{ pb}$	± 0.49 pb	$\pm 0.89~{ m pb}$	$+1.25 \text{ pb} \\ -1.26 \text{ pb}$
$^{+0.21\%}_{-2.37\%}$	$\pm 1.16\%$	$\pm 1\%$	$\pm 0.83\%$	$\pm 1\%$	$\pm 1.85\%$	$^{+2.59\%}_{-2.62\%}$

2009.00516

scale uncertainties no longer the dominant uncertainties

Hbb

N3LO in 5-flavour scheme Duhr, Dulat, Hirschi, Mistlberger 2004.04752 matched to NLO in 4-flavour scheme $(m_b \neq 0)$

 $pp \rightarrow Hbb$ as a way to directly measure y_b :

Pagani, Shao, Zaro 2005.10277

calculation of full QCD-EW NLO corrections, including ZH and VBF production channels

conclusion: overwhelming backgrounds, in particular due to VBF and $ZH(Z \rightarrow bb)$

0000

differential N3LO results

scale uncertainties reduced by more than 50% w.r.t. NNLO

gluon fusion H NNLO differential results

 $pp \to H+ \le 1 \, j \to 4l+ \le 1 \, j$

Chen, Gehrmann, Glover, Huss 1905.13738

study of perturbative stability of lepton acceptance cuts

beyond fixed order

NNLO+PS

Monni, Re, Wiesemann 2006.04133

Higgs production with a jet veto

Gangal, Gaunt, Tackmann, Vryonidou 2003.04323

resummation up to NNLL'+NNLO with rapidity dependent jet veto

reduced sensitivity to hadronisation effects

large-pT Higgs + jet production

combine NNLO (HTL) with NLO (full m_t) (not unique)

 $\Sigma^{\text{EFT-improved (1), NNLO}}(p_{\perp}^{\text{cut}}) \equiv \frac{\Sigma^{\text{SM, NLO}}(p_{\perp}^{\text{cut}})}{\Sigma^{\text{EFT, NLO}}(p_{\perp}^{\text{cut}})} \Sigma^{\text{EFT, NNLO}}(p_{\perp}^{\text{cut}})$

7-point scale variations

red curve also contains estimated δ_{m_t} (on-shell top mass scheme)

large-pT Higgs + jet production

Becker et al. 2005.07762

$p_{\perp}^{ ext{cut}}$	$NNLO_{quad.unc.}^{approximate}$ [fb]	HJ-MINLO [fb]	MG5_MC@NLO [fb]
$400 \mathrm{GeV}$	$33.3^{+10.9\%}_{-12.9\%}$	$29^{+24\%}_{-21\%}$	$31.5^{+31\%}_{-25\%}$
$430 {\rm GeV}$	$23.0^{+10.8\%}_{-12.8\%}$	_	$21.8^{+31\%}_{-25\%}$
$450 {\rm GeV}$	$18.1^{+10.8\%}_{-12.8\%}$	$16.1^{+22\%}_{-21\%}$	$17.1^{+31\%}_{-25\%}$

reasonable agreement with state-of-the art generators within (large) uncertainties

large-pT Higgs + jet production

other channels gain importance at large pT, in particular VH effects of anomalous couplings mostly at high pT

vector bosons associated production

WH production at NNLO with $H \rightarrow b\bar{b}$ with massive b-quarks

Behring, Bizon, Caola, Melnikov, Röntsch 2003.08321

significant differences between

massive and massless case

and NNLO vs NLO+PS

H and HH in vector boson fusion

calculated up to N3LO in structure function approach Dreyer, Karlberg '16 (H), '18 (HH)

non-factorisable contributions to VBF H Lui, Melnikov, Penin 1906.10899

non-factorisable contributions to VBF H and HH Dreyer, Karlberg, Tancredi 2005.11334

- is it really of this form?
- how large (or small) can the triple Higgs coupling be?

 $g \sim 00000000$

g $\infty \infty \infty$

 $g(k_1)$

 $H(k_3)$

 $g(k_1)$

- non-resonant HH production (direct measurement)
- indirect constraints (e.g. from single H)

HH production channels

Higgs boson pair production in gluon fusion

current status:

- N3LO: Chen, Li, Shao, Wang '19 (HTL with mt effects)
- NNLO: De Florian, Mazzitelli '13 Grigo, Melnikov, Steinhauser '14

NNLO_{FTapprox} Grazzini, Kallweit, GH, Jones, current recommendation of LHC Higgs Working Group

NLO full m_t

Borowka, Greiner, GH, Jones, Kerner, Schlenk et al. '16 Baglio, Campanario, Glaus Mühlleitner, Spira, Streicher '18

Davies, GH, Jones, Kerner, Mishima, Steinhauser, Wellmann '19

top quark mass scheme uncertainties: pole mass versus MS mass

Baglio, Campanario, Glaus Mühlleitner, Ronca, Spira 2008.11626

image: S. Borowka

Higgs boson pair production in gluon fusion

Chen, Li, Shao, Wang 1912.13001

Grazzini, Kallweit, GH, Jones, Kerner, Lindert, Mazzitelli 1803.02463

scheme dependence

Karisruhe Institute of Technology

HH at NLO within EFT

SMEFT:

$$\Delta \mathcal{L}_{\text{dim6}} = \frac{\bar{c}_H}{2v^2} \partial_\mu (\phi^{\dagger} \phi) \partial^\mu (\phi^{\dagger} \phi) + \frac{\bar{c}_u}{v^2} y_t (\phi^{\dagger} \phi \,\bar{q}_L \tilde{\phi} t_R + \text{h.c.}) - \frac{\bar{c}_6}{2v^2} \frac{m_h^2}{v^2} (\phi^{\dagger} \phi)^3 + \frac{\bar{c}_u g}{v^2} g_s (\bar{q}_L \sigma^{\mu\nu} G_{\mu\nu} \tilde{\phi} t_R + \text{h.c.}) + \frac{4\bar{c}_g}{v^2} g_s^2 \phi^{\dagger} \phi \, G_{\mu\nu}^a G^{a\mu\nu}$$

$\begin{aligned} \text{HEFT (non-linear EFT):} \\ \Delta \mathcal{L}_{d\chi \leq 4} &= -m_t \left(c_t \frac{h}{v} + c_{tt} \frac{h^2}{v^2} \right) \, \bar{t} \, t - \frac{c_{hhh}}{2v} \frac{m_h^2}{2v} h^3 \\ &+ \frac{\alpha_s}{8\pi} \left(c_{ggh} \frac{h}{v} + c_{gghh} \frac{h^2}{v^2} \right) \, G^a_{\mu\nu} G^{a,\mu\nu} \end{aligned}$ $\begin{aligned} \text{SMEFT relations:} \, c_t &= 1 - \frac{\bar{c}_H}{2} - \bar{c}_u \,, \quad c_{tt} = -\frac{\bar{c}_H + 3\bar{c}_u}{2} \,, \quad c_{hhh} = 1 - \frac{3}{2} \bar{c}_H + \bar{c}_6 \,, \end{aligned}$

$$c_{ggh} = 2c_{gghh} = 128\pi^2 \bar{c}_g \; .$$

HH K-factors

K-factors as functions of the BSM couplings

vary substantially (much less variation in heavy top limit)

HH full NLO MC tool

 Monte Carlo program (within Powheg-Box) to produce full NLO results for Higgs pair production in gluon fusion

GH, Jones, Kerner, Luisoni, Scyboz 2006.16887,1903.08137

- interface to Pythia and two different Herwig parton showers
- 5 anomalous couplings $c_{hhh}, c_t, c_{tt}, c_{ggh}, c_{gghh}$ can be varied by the user
- publicly available at

http://powhegbox.mib.infn.it/User-Process-V2/ggHH

HH invariant mass with variation of the self-coupling

 $m_{\rm hh} \, [{\rm GeV}]$

m_{hh} shape analysis

based on autoencoder and K-means clustering Capozi, GH 1908.08932

0.000

400

600

 m_{hh} [GeV]

800

 c_{hhh} and c_{tt} have strong influence on shape shape combined with bounds on total σ gives better constraints

Summary

- the Higgs sector might offer windows to new physics
- precision is the key at current energies
- great progress in precision calculations for some processes scale uncertainties no longer the dominant uncertainties
- current main challenges:
 - mass effects
 - mixed EW-QCD corrections
 - * $2 \rightarrow 3 \, {\rm processes}$ at NNLO
 - reduce PDF, $lpha_s$ -uncertainties
 - NNLO+PS/analytic resummation
 - BSM, EFT + higher orders

34

The Standard Model is unlikely to be the full picture

with precision we may see imprints of physics at higher scales!

(e.g. watch the shadows)

Higgs and the universe

Degrassi, Di Vita, Elias-Miro, Espinosa, Giudice, Isidori, Strumia '12

$$\lambda=\lambda(\mu)~$$
 is a running coupling

Bednyakov, Kniehl, Pikelner, Veretin '15

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia '13

(through quantum corrections, in the SM dominated by top and Higgs loops)

HH shape analysis

Capozi, GH 1908.08932

- defined 7 NLO benchmark points characteristic for a certain shape
- dashed lines: LO, solid: NLO

ggF H NNLO differential results

 $pp \to H + \le 1 \, j \to 4l + \le 1 \, j$

Chen, Gehrmann, Glover, Huss 1905.13738

study of perturbative stability of lepton acceptance cuts

Invariant mass of the Higgs boson pair

Observable:
$$m_{hh}^2 = (p_{h_1} + p_{h_2})^2$$

full NLO combined wit NNLO

01	2003	2005	20	07	20	09	20	11	20	13	20	15	20	17
$\sigma_{ m tot}$	W/Z	e	+e ⁻	$\rightarrow e$	vent s	shape	€S		-		-	e^+e^-	$\rightarrow 3$) jets
	$\sigma_{ m tot}H$	e	$^+e^-$	$\rightarrow 3$	jets						$t\overline{t}$	Hin	(VPI).
	$\sigma_{\rm tot} W H$	-				$\sigma_{ m tot} I$	Ijj(VBF)		H +	- jet	$(m_t -$	$ ightarrow \infty$)
		$\operatorname{diff} H$					VV I	1	∨ tot	UU	H +	jet	$(m_t \rightarrow$	∞)
		diff V	V/Z				ן ד ד ד ד	/ . .	$\overline{\mathbf{A}}$. <u>+</u>	H	/ + j	et (m	$_t ightarrow \infty$
			diff	H			\sim	\vee			Z	(+ i	et	
					diff I	W/Z					ŗ	$pp \rightarrow$	2 je	ts
	colortul									/		$\frac{1}{e\chi}$	\rightarrow	2 jets
			/						Z	γ	- W	\mathbf{v}	7 + 1	jet
	projectio	n to Re	orn								Z	ŶŶ	H	HV iot
	sector ir	nnrove	dre							VV Z	VV H	F	IW,	HZ
	N-iettin	ess				· · · · · · · · · · · · · · · · · · ·				тт	I TT	HH(a)	m_t –	$\rightarrow \infty)$
	at											ep	\rightarrow j	et
	antonn	-											γ –	⊢ jet
								,			,			,

