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Parton shower status
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» Despite pushes for higher orders in parton showers (e.g. [Prestel,
Hoeche—Phys.Rev.D 96 (2017) 7, 074017], [Skands, Li—PLB 771 (2017)
59-66]) road to accuracy requires paradigm shift

» Recoil, ordering, colour, correlations
[Dasgupta, Salam—PLB 512 (2001) 323-330], [Bewick, Seymour,
Richardson—JHEP 04 (2020) 019], [Forshaw, Holguin, Platzer—JHEP 09
(2020) 014], [Ruffa, Platzer—soon], [ML, Platzer, Simpson—in progr.]

» Amplitude level sets the complexity for resolving these
[Nagy, Soper], [DeAngelis, Forshaw, Platzer—2007.09648 & JHEP 05 (2018)
044]

» Not only relevant theoretically but also in its own right to go
beyond leading-N- resummation for complex observables
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Coherent branching

» Coherent emission of soft large angle gluons from systems of
collinear partons

» Angular ordering essential for including large-angle soft

contributions
=1 11<1 / 1< 11<1

» Resummation of global jet observables such as thrust =

» NLL accurate @NLC if inclusive over secondary soft gluon
emission (LC: Leading Colour)

» |eading regions analyzed in iterated 1 — 2 branchings
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Non-global observables

» No global measure of deviation from
jet configuration: Coherent
branching fails, full complexity of
amplitudes strikes back.

» Dipole shower: correct LL@LC for
non-global, but issues in NLL@LC
and LL@NLC for global observables
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Non-global observables

» No global measure of deviation from
jet configuration: Coherent
branching fails, full complexity of
amplitudes strikes back.

» Dipole shower: correct LL@LC for
non-global, but issues in NLL@LC
and LL@NLC for global observables

» Require dipole-type soft gluon
evolution to account for
change in colour structure

» Even with a dipole approach,
1/N¢ effects possibly become
comparable to subleading
logs, and intrinsically ~ 10%
effects
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Motivation

Study approximations in emission iterations rather than
iterations of one emission approximation.

>
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Going beyond iterated 1 — 2

o / higher logarithmic accuracy
splittings in parton showers

&
Combine with global recoil scheme Systematic expansion
Address non-global observables to handle uncertainties

Include color and spin correlations

Refine ad hoc models of MC-programs,
e.g. azimuthal correlations

Define language for connecting fixed order to parton showers
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Team

Karlsruhe/Manchester/Vienna network with support from SFB
drives significant parts of the development, also relating to aspects
such as color reconnection | e.g. Gieseke, Kirchgaesser, Platzer-JHEP 11

(2018) 149]
Forshaw + De Angelis, Holguin, ... Platzer + Ruffa, ...
Lvr\} ig%rs itat
RAANCIRESER ‘\iVolver /
RWTH Jo—
Czakon + NN, ... 7 7/Mcnet ",
F

—— \ AT

Need to combine diverse expertise from
different netWOrkS to gain momentum. Gieseke + Loschner, Simpson-Dore, ...

[Platzer—Annual CRC Meeting 2019]
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Current activities

1. Amplitude evolution, link to resummation in existing showers
[Forshaw, Holguin, Platzer— 2003.06400 & JHEP 08 (2019) 145]

2. New mappings and dipole shower improvements in Herwig
[Holguin, Platzer, Simpson, in progr.]

3. Virtual corrections [Ruffa, Platzer—soon]
4. Dipole showers analytics [Gieseke, Platzer, Schaber—in progr.]

5. Real corrections [ML, Platzer, Emma Simpson Dore—in progr.]
71 this talk

Goal: build a universal algorithm with well-handled accuracy

» Focus on: factorization, systematic expansion of emission
contributions, recoil and its relation to factorizing evolution
kernels
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Splitting kernels



Splitting kernels from amplitudes

From the cross-section level to decomposed amplitudes:

o =3 [T IM() M) - p)
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Splitting kernels from amplitudes

From the cross-section level to decomposed amplitudes:

o =3 [T IM() M) - p)

M| T, | o =G | x P
= 5
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Splitting kernel iterations

Density operator language is useful for discussing emissions in
iterative manner:

/_/R
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i N ~ i
D, 1N D, H rj D Df

[Forshaw, Holguin, Platzer—JHEP 09 (2020) 014]
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Disentangling different collinear sectors

» Use partition of one to single
out different collinear sectors

(A) A b
1="F \A + IED<2A) + P(A) & @ Sp Sp}-’
P1
o oo @ < -
» Decomposition in terms of set : @ o || o () ‘y
of possible collinear pairings / "
» Avoid overlapping collinear y ) .
singularities

» Keep smooth interpolation
over whole phase space
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Partitioning for two emissions

1
» Example: triple collinear and coll-coll AR CIC
pairings illgllt Sij
i || k|| L S
> Read ; ‘\|| k ||‘| ! S,
0 . 2 J kLOjkl
@l gl k) : Sijk = (@i + a5 + q)* =0 G 1l 9), (kI 1) Sij S
(@l k), G I X
@D, Gl k) X

= Construct partitioning factors of the form

P Sk1Sjkl
G3k) = Sp1Sikt + SigSijk + SijrSikt + (Ski + Si5)Sizk Sk

» Extracts the (i || j || k)- singular behaviour
» Non-singular in any collinear configuration
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Power counting

» Sudakov-like decomposition of momenta:

Sr+pi

H,E : - H
= Tik = 21 D; +
4 ik 1P 221 pi-n

kel

m I
n Jrk:J_J,

» Decompose fermion and gluon lines (factors of /z; absorbed in
vertices for fermions):

N, IR “oolleoar = d*(pi),
Z’
Sr+n3
Sr+pi oolllogos — - -EINNEE
L =<3 ! 7, (21 pi-m)? ’
2z7pi'n
kﬂ n¥ + ntkY
N Fii =0l

E 21 Zrpi-n
» | eads to power counting rules with potential connection to SCET
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Vertex rules

» Can find vertex rules such as:
Y B O’Y =0, — 0.
KEF&:% B SA% ik Wy
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One emission example

Full one emission (ij)-splitting kernel consists of

» Exhibits factorisation to hard amplitude
» Smooth interpolation between soft and collinear limits
» Algorithmically generalizable for more emissions
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Check: One emission splitting function

» Reproduce Splitting function P, as a crosscheck
(Note: interference diagrams are power-suppressed in lightcone gauge)
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Momentum mapping

Adding emissions

» Start with on-shell (OS) momenta p; (to be emitters) and p,. (to
be recoilers) with overall momentum transfer Q = >~ p; + >, p
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Momentum mapping

Adding emissions

add emissions

Spe)

» Start with on-shell (OS) momenta p; (to be emitters) and p,. (to
be recoilers) with overall momentum transfer Q = >". p; + >, p»

» Add emissions to the process with:

1. Momentum conservation: > . ¢: + >,  ku +>., ¢ = Q
2. On-shellness of all partons '
3. Parametrization of soft & collinear behaviour for any # of emissions
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Momentum mapping

A
qQr = —pr
ar

A = = .
ki = o [au pi + Bani + 1\ caBa nﬁ] , A=Y aa, Bu=(1-A)Ba
7
A - -
= — [(1 — A)pi + (yi — ;@z)m — > A aafu nﬂ

ar 1

» Decomposition w/ light-like momentum n; and n:;-p; = n;;-n; =0
> Need o? = (Q + N)?/Q? for momentum conservation

Q:ZQT"‘ZQi'f’Zkil:%[Zpr+2(])i+yini)]
T i .l i i

~—
Q N

» Lorentz transformation A, oy, = non-trivial global recoil
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Momentum mapping

» Using A and oy, recoil effects are removed from considerations
about factorization, due to Lorentz invariance and known mass
dimension of the amplitudes:

1 . A
|M(Q1» ©909) Qn)> = W‘M(q17 0009 Qn)> °
ay

» Soft and collinear power counting possible via scaling of «; and
Bit, i.e. (pi, ni, n;;)-components

» Can study leading singular behaviour for implementation in
splitting kernels
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General algorithm

» Collect leading collinear behaviour for some Ue=) {Pgd)v‘ld}
collinear configuration c in splitting kernels: d

» Sum over configurations for full soft
behaviour:

g
If
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Preliminary implementations

Thrust
_
| 10" g —— PL-Angular
=1 F —— PL-Default
N —— PL-Multi
. 0 A N E PL-Minmod
Next to formal studies, explicit SR PLPglobal
Herwig implementations are being W
carried out, e.g. momentum w7
mappings: e
[Holguin, Platzer, Simpson, in progr.] w:fé o D Lm0
2 8 Sl
0.7 E
[ SN 1 — I AR IUAVEI S AR
5 & @ & o mae
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Conclusions

Goal: universal algorithm for handling accuracy in multiple
emissions (for applications in parton showers and beyond)

>

>
>
>

v

Momentum mapping for exposing collinear and soft factorization
Global recoil via Lorentz transformation

Partitioning algorithm to separate overlapping singularities
Density-operator formalism to study iterative behaviour of
emissions

General Sudakov-like momentum decomposition for power
counting rules = simplification of amplitudes
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Backup slides



Check: Two Emissions

> Reproduced from general two-emission kernel which includes
soft-limit too (here: in lightcone-gauge)

8 : A . _
B < Awas Me) CACp <R§?’3anb>>l¢i o) (Bu 3/2) _



Global and non-global observables

[Dasgupta, Salam (2001)]

» Example: heavy and light jet mass (global) vs. hemisphere jet
mass (non-global)
» Cancellations between large angle-soft and virtual contributions

(from k5) not guaranteed
= NLL enhancement from leftover o% L? terms



Partitioning

Amplitudes carry different singular S-invariants

N(Sla 52)

S1,8) =
A(S1, S2) 5.5,
Decomposition using partitioning factors:

pld) _ 52 (4 _ _ S
1) S1+ 8y’ 2 S1+ 8y’

we can decompose A into

W}A: N(51,8) | N(S1,52)
@ S1(S1+ %) | S2(S1+S2)

_ [p
A=[P) +P



General Algorithm
Amplitude

» Devise general setup for extracting singular behaviour for k&

emissions aryy
a1
arygy
k
singular terms
— S
p=1 r
arp1
In+k
Irpl,

» Write amplitude in terms of splitting operators and factorized
matrix element

k
Mgk (qrs s Gnrk)) = Z Z SP(r11]...fr1ey) " SPrpal.lrpe,)
p=1 {r}

M (@15 s G0raallriey)s -+ Arpal-lrpey ) s Gnte))



General Algorithm
Amplitude squared

» Study iterative behaviour of
emissions

> Single out topologies with leading
singular behaviour
(via # of unresolved partons)

» Examples for two emissions:




Two emissions

» For a given number of partons, find M
categorization of singular configs y
> Read X SRS
(171K Sige = (@i + a5+ ) >0~ Tk SesSan
i , ARAK Sy
» Triple collinear and double-soft f ” 2 H ! S
contributions gk Sk1Sjkl
G@llg), (k1D Sij Skl
G, G D X
G, G k) X

Construct partitioning factors from

- M?(SkiSiki + SijSijk + SijiSir) + (Ski + Sij)SijeSim
M?2(Sk1Si61 + SijSije + SijeSint) + (Sk + Sij)SieSikt

=- non-singular in any configuration



Phase space

» Can write down factorized phase space using momentum
mapping

d¢ ({ai}s, {ar}r, {ki}E,;1Q) = dé ({p}r|Pr) o’ "= (21)%6(Ps + Pr — Q)

9({7}s,Gr)
o({P}s, Pr)

w(PR, am)

dm ﬁ?) 0
= = S} dp; O(q;
< | R — (Qﬁ)g[p (a0

11 [drales).

IEE;

» Emission phase space:

Ak = |T (i, Bir, Q)| dag dBy A3,

» Computable in d dimensions:

— (2p;- nz) En

(azlﬁzl 2

[dkzl] = W (azl) (6zl) 4 dall dﬁzl de 3
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