Multi-emission Kernels for Parton Branching Algorithms^a

Maximilian Löschner

Institute for Theoretical Physics (Project B1d, PI: S. Gieseke) Erwin Schrödinger Institut (research stay in Vienna)

7 October 2020

^ain collaboration with Simon Plätzer and Emma Simpson Dore, arXiv:2010.xxxxx

Motivation Current activities Splitting kernels

Conclusions

 $\mathrm{d}\sigma \simeq \mathrm{d}\sigma_{\mathrm{hard}}(Q) \times \mathrm{PS}(Q \to \mu) \times \mathrm{Had}(\mu \to \Lambda) \times \dots$

Parton shower status

Despite pushes for higher orders in parton showers (e.g. [Prestel, Hoeche—Phys.Rev.D 96 (2017) 7, 074017], [Skands, Li—PLB 771 (2017) 59-66]) road to accuracy requires paradigm shift

Recoil, ordering, colour, correlations

[Dasgupta, Salam—PLB 512 (2001) 323-330], [Bewick, Seymour, Richardson—JHEP 04 (2020) 019], [Forshaw, Holguin, Plätzer–JHEP 09 (2020) 014], [Ruffa, Plätzer—soon], [ML, Plätzer, Simpson—in progr.]

Amplitude level sets the complexity for resolving these [Nagy, Soper], [DeAngelis, Forshaw, Plätzer—2007.09648 & JHEP 05 (2018)

044]

Not only relevant theoretically but also in its own right to go beyond leading-N_C resummation for complex observables

Coherent branching

- Coherent emission of soft large angle gluons from systems of collinear partons
- Angular ordering essential for including large-angle soft contributions

- Resummation of global jet observables such as thrust τ
- NLL accurate @NLC if inclusive over secondary soft gluon emission (LC: Leading Colour)
- Leading regions analyzed in iterated $1 \rightarrow 2$ branchings

Non-global observables

- No global measure of deviation from jet configuration: Coherent branching fails, full complexity of amplitudes strikes back.
- Dipole shower: correct LL@LC for non-global, but issues in NLL@LC and LL@NLC for global observables

Non-global observables

- No global measure of deviation from jet configuration: Coherent branching fails, full complexity of amplitudes strikes back.
- Dipole shower: correct LL@LC for non-global, but issues in NLL@LC and LL@NLC for global observables
- Require dipole-type soft gluon evolution to account for change in colour structure
- ► Even with a dipole approach, $1/N_C$ effects possibly become comparable to subleading logs, and intrinsically $\sim 10\%$ effects

Motivation

Study approximations in emission iterations rather than iterations of one emission approximation.

- ► Going beyond iterated 1 → 2 splittings in parton showers
- Combine with global recoil scheme
- Address non-global observables
- Include color and spin correlations
- Refine ad hoc models of MC-programs, e.g. azimuthal correlations
- Define language for connecting fixed order to parton showers

higher logarithmic accuracy ⇔ Systematic expansion to handle uncertainties

Team

Karlsruhe/Manchester/Vienna network with support from SFB drives significant parts of the development, also relating to aspects such as color reconnection [*e.g.* Gieseke, Kirchgaesser, Plätzer-JHEP 11 (2018) 149]

[Plätzer—Annual CRC Meeting 2019]

Current activities

- 1. Amplitude evolution, link to resummation in existing showers [Forshaw, Holguin, Plätzer— 2003.06400 & JHEP 08 (2019) 145]
- 2. New mappings and dipole shower improvements in Herwig [Holguin, Plätzer, Simpson, in progr.]
- 3. Virtual corrections [Ruffa, Plätzer—soon]
- 4. Dipole showers analytics [Gieseke, Plätzer, Schaber-in progr.]
- 5. Real corrections [ML, Plätzer, Emma Simpson Dore—in progr.] ↑ this talk

Goal: build a universal algorithm with well-handled accuracy

 Focus on: factorization, systematic expansion of emission contributions, recoil and its relation to factorizing evolution kernels

Splitting kernels

Splitting kernels from amplitudes

From the cross-section level to decomposed amplitudes:

$$\sigma = \sum_{n} \int \operatorname{Tr} \left[\left| \mathcal{M}(\mu) \right\rangle \left\langle \mathcal{M}(\mu) \right| \right] u(p_1, \dots, p_n) \mathrm{d}\phi_n$$

Splitting kernels from amplitudes

From the cross-section level to decomposed amplitudes:

$$\sigma = \sum_{n} \int \operatorname{Tr} \left[\left| \mathcal{M}(\mu) \right\rangle \left\langle \mathcal{M}(\mu) \right| \right] u(p_1, \dots, p_n) \mathrm{d}\phi_n$$

Splitting kernel iterations

Density operator language is useful for discussing emissions in iterative manner:

[Forshaw, Holguin, Plätzer–JHEP 09 (2020) 014]

Disentangling different collinear sectors

 Use partition of one to single out different collinear sectors

 $1 = \mathbb{P}_1^{(\mathcal{A})} + \mathbb{P}_2^{(\mathcal{A})} + \mathbb{P}_3^{(\mathcal{A})} + \dots$

- Decomposition in terms of set of possible collinear pairings
- Avoid overlapping collinear singularities
- Keep smooth interpolation over whole phase space

Partitioning for two emissions

 Example: triple collinear and coll-coll pairings

► Read ($i \parallel j \parallel k$): $S_{ijk} = (q_i + q_j + q_k)^2 \to 0$

	$\frac{1}{S_{ij}S_{kl}S_{ijk}S_{jkl}}$
$i \parallel j \parallel k$	$S_{ij}S_{ijk}$
$i \parallel j \parallel l$	S_{ij}
$i\parallel k\parallel l$	S_{kl}
$j \parallel k \parallel l$	$S_{kl}S_{jkl}$
$(i \parallel j), (k \parallel l)$	$S_{ij}S_{kl}$
$(i \parallel k), (j \parallel l)$	×
$(i \parallel l), (j \parallel k)$	×

 \Rightarrow Construct partitioning factors of the form

$$\mathbb{P}_{(ijk)}^{(\mathcal{A})} = \frac{S_{kl}S_{jkl}}{S_{kl}S_{jkl} + S_{ij}S_{ijk} + S_{ijk}S_{jkl} + (S_{kl} + S_{ij})S_{ijk}S_{jkl}}$$

- **Extracts the** $(i \parallel j \parallel k)$ singular behaviour
- Non-singular in any collinear configuration

Power counting

Sudakov-like decomposition of momenta:

$$q_I^{\mu} = \sum_{k \in I} r_{ik} = z_I \, p_i^{\mu} + \frac{S_I + p_{\perp,I}^2}{2z_I \, p_i \cdot n} \, n^{\mu} + k_{\perp,I}^{\mu} \, ,$$

• Decompose fermion and gluon lines (factors of $\sqrt{z_I}$ absorbed in vertices for fermions):

Leads to power counting rules with potential connection to SCET

Vertex rules

Can find vertex rules such as:

One emission example

Exhibits factorisation to hard amplitude

- Smooth interpolation between soft and collinear limits
- Algorithmically generalizable for more emissions

Check: One emission splitting function

Reproduce Splitting function P_{qg} as a crosscheck (Note: interference diagrams are power-suppressed in lightcone gauge)

Check: One emission splitting function

 Reproduce Splitting function P_{qg} as a crosscheck (Note: interference diagrams are power-suppressed in lightcone gauge)

Check: One emission splitting function

Reproduce Splitting function P_{qg} as a crosscheck (Note: interference diagrams are power-suppressed in lightcone gauge)

$$\rightarrow \frac{4\pi\alpha_s C_F}{\hat{\alpha}} \frac{1}{\lambda^2 S_{ij}} \Big\{ (d-2)\alpha_i + 4\frac{(1-\alpha_i)^2}{\alpha_i} + 4(1-\alpha_i) \Big\} \hat{p}_i + \mathcal{O}(\lambda^{-1}).$$

Momentum mapping Adding emissions

Start with on-shell (OS) momenta p_i (to be emitters) and p_r (to be recoilers) with overall momentum transfer $Q \equiv \sum_i p_i + \sum_r p_r$

Momentum mapping Adding emissions

- Start with on-shell (OS) momenta p_i (to be emitters) and p_r (to be recoilers) with overall momentum transfer $Q \equiv \sum_i p_i + \sum_r p_r$
- Add emissions to the process with:
 - 1. Momentum conservation: $\sum_{i} q_i + \sum_{i,l} k_{il} + \sum_{r} q_r = Q$
 - 2. On-shellness of all partons
 - 3. Parametrization of soft & collinear behaviour for any # of emissions

Momentum mapping

$$q_{r} = \frac{\Lambda}{\alpha_{L}} p_{r}$$

$$k_{il} = \frac{\Lambda}{\alpha_{L}} \left[\alpha_{il} p_{i} + \tilde{\beta}_{il} n_{i} + \sqrt{\alpha_{il} \tilde{\beta}_{il}} n_{il}^{\perp} \right], \quad A_{i} \equiv \sum_{l} \alpha_{il}, \quad \tilde{\beta}_{il} = (1 - A_{i}) \beta_{il}$$

$$q_{i} = \frac{\Lambda}{\alpha_{L}} \left[(1 - A_{i}) p_{i} + (y_{i} - \sum_{l} \tilde{\beta}_{il}) n_{i} - \sum_{l} \sqrt{\alpha_{il} \tilde{\beta}_{il}} n_{il}^{\perp} \right]$$

Decomposition w/ light-like momentum n_i and n[⊥]_{il} · p_i = n[⊥]_{il} · n_i = 0
 Need α²_L = (Q + N)²/Q² for momentum conservation

$$Q = \sum_{r} q_r + \sum_{i} q_i + \sum_{i,l} k_{il} = \frac{\Lambda}{\alpha_L} \Big[\underbrace{\sum_{r} p_r}_{Q} + \sum_{i} (p_i + y_i n_i) \Big]_{N}$$

• Lorentz transformation $\Lambda, \alpha_L \Rightarrow$ non-trivial global recoil

Momentum mapping II

Using Λ and α_L, recoil effects are removed from considerations about factorization, due to Lorentz invariance and known mass dimension of the amplitudes:

$$|\mathcal{M}(q_1,...,q_n)\rangle = \frac{1}{\alpha_L^{2n-4}} |\mathcal{M}(\hat{q}_1,...,\hat{q}_n)\rangle .$$

- Soft and collinear power counting possible via scaling of α_{il} and β_{il} , *i.e.* $(p_i, n_i, n_{il}^{\perp})$ -components
- Can study leading singular behaviour for implementation in splitting kernels

General algorithm

- Collect leading collinear behaviour for some collinear configuration c in splitting kernels:
- Sum over configurations for full soft behaviour:

Sp

Preliminary implementations

Next to formal studies, explicit Herwig implementations are being carried out, *e.g.* momentum mappings:

[Holguin, Plätzer, Simpson, in progr.]

Conclusions

Goal: universal algorithm for handling accuracy in multiple emissions (for applications in parton showers and beyond)

- Momentum mapping for exposing collinear and soft factorization
- Global recoil via Lorentz transformation
- Partitioning algorithm to separate overlapping singularities
- Density-operator formalism to study iterative behaviour of emissions
- ► General Sudakov-like momentum decomposition for power counting rules ⇒ simplification of amplitudes

Conclusions

Goal: universal algorithm for handling accuracy in multiple emissions (for applications in parton showers and beyond)

- Momentum mapping for exposing collinear and soft factorization
- Global recoil via Lorentz transformation
- Partitioning algorithm to separate overlapping singularities
- Density-operator formalism to study iterative behaviour of emissions
- General Sudakov-like momentum decomposition for power counting rules ⇒ simplification of amplitudes

Backup slides

Check: Two Emissions

Reproduced from general two-emission kernel which includes soft-limit too (here: in lightcone-gauge)

Global and non-global observables

- Example: heavy and light jet mass (global) vs. hemisphere jet mass (non-global)
- Cancellations between large angle-soft and virtual contributions (from k₂) not guaranteed

 \Rightarrow NLL enhancement from leftover $\alpha_S^2 L^2$ terms

Partitioning

Amplitudes carry different singular S-invariants

$$\mathcal{A}(S_1, S_2) = \frac{\mathcal{N}(S_1, S_2)}{S_1 S_2},$$

Decomposition using partitioning factors:

$$\mathbb{P}_{(1)}^{(\mathcal{A})} = \frac{S_2}{S_1 + S_2}, \quad \mathbb{P}_{(2)}^{(\mathcal{A})} = \frac{S_1}{S_1 + S_2},$$

we can decompose $\ensuremath{\mathcal{A}}$ into

$$\mathcal{A} = \left[\mathbb{P}_{(1)}^{(\mathcal{A})} + \mathbb{P}_{(2)}^{(\mathcal{A})} \right] \mathcal{A} = \frac{\mathcal{N}(S_1, S_2)}{S_1(S_1 + S_2)} + \frac{\mathcal{N}(S_1, S_2)}{S_2(S_1 + S_2)}$$

General Algorithm

Devise general setup for extracting singular behaviour for k emissions

 Write amplitude in terms of splitting operators and factorized matrix element

$$|\mathcal{M}_{n+k}(q_1,...,q_{n+k})\rangle = \sum_{p=1}^k \sum_{\{r\}} \mathbf{Sp}_{(r_{11}|...|r_{1\ell_1})}...\mathbf{Sp}_{(r_{p1}|...|r_{p\ell_p})}$$
$$|\mathcal{M}_n(q_1,...,q_{(r_{11}|...|r_{1\ell_1})},...,q_{(r_{p1}|...|r_{p\ell_p})},...,q_{n+k})\rangle$$

General Algorithm

- Study iterative behaviour of emissions
- Single out topologies with leading singular behaviour (via # of unresolved partons)
- Examples for two emissions:

Two emissions

 For a given number of partons, find categorization of singular configs

Read

$$(i \parallel j \parallel k) : S_{ijk} = (q_i + q_j + q_k)^2 \to 0$$

 Triple collinear and double-soft contributions

$i \parallel j \parallel k$	$\frac{S_{ij}S_{kl}S_{ijk}S_{jkl}}{S_{ij}S_{ijk}}$
$i \parallel j \parallel l$	S_{ij}
$i \parallel k \parallel l$ $i \parallel k \parallel l$	S_{kl} $S_{kl}S_{jkl}$
$(i \parallel j), (k \parallel l)$	$S_{ij}S_{kl}$
$(i \parallel k), (j \parallel l)$	×
$(i \parallel l), (j \parallel k)$	×

Construct partitioning factors from

$$1 = \frac{M^2(S_{kl}S_{jkl} + S_{ij}S_{ijk} + S_{ijk}S_{jkl}) + (S_{kl} + S_{ij})S_{ijk}S_{jkl}}{M^2(S_{kl}S_{jkl} + S_{ij}S_{ijk} + S_{ijk}S_{jkl}) + (S_{kl} + S_{ij})S_{ijk}S_{jkl}}$$

\Rightarrow non-singular in any configuration

Phase space

Can write down factorized phase space using momentum mapping

$$\begin{aligned} \mathrm{d}\phi\left(\{q_i\}_{\mathbf{S}},\{q_r\}_{\mathbf{R}},\{k_{il}\}_{\mathbf{E}_i}|Q\right) &= \mathrm{d}\phi\left(\{p\}_{\mathbf{R}}|P_R\right)\alpha^{d-n_R(d-2)}(2\pi)^d\delta\big(P_S+P_R-Q\big) \\ &\times \frac{\mathrm{d}m^2}{2\pi}\left[\mathrm{d}P_R\right]\frac{\omega(\vec{P}_R,\alpha m)}{\omega(\vec{Q}_R,m)}\Theta(Q_R^0)\prod_{i\in\mathbf{S}}\left[\mathrm{d}p_i\right]\frac{\omega(\vec{p}_i)}{\omega(\vec{q}_i)}\Theta(q_i^0)\left|\frac{\partial(\{\vec{q}\}_{\mathbf{S}},\vec{Q}_R)}{\partial(\{\vec{p}\}_{\mathbf{S}},\vec{P}_R)}\right|\prod_{l\in\mathbf{E}_i}\left[\mathrm{d}k_{il}\right]\Theta(k_{il}^0).\end{aligned}$$

Emission phase space:

$$\mathrm{d}^{d-1}k_{il} = |\mathcal{J}(\alpha_{il}, \beta_{il}, \Omega)| \, \mathrm{d}\alpha_{il} \, \mathrm{d}\beta_{il} \, \mathrm{d}^{d-3}\Omega,$$

Computable in d dimensions:

$$[\mathrm{d}k_{il}] = \frac{1}{(2\pi)^{d-1}} \Theta(\alpha_{il}) \Theta(\tilde{\beta}_{il}) \frac{\alpha^{2-d}}{4} \frac{(2p_i \cdot n_i)^{\frac{d-2}{2}}}{(\alpha_{il}\tilde{\beta}_{il})^{\frac{d-4}{2}}} \mathrm{d}\alpha_{il} \, \mathrm{d}\tilde{\beta}_{il} \, \mathrm{d}\Omega^{d-3}.$$