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Motivations

Particle physics after the Higgs boson

2012 direct detection of the Higgs boson
SM complete: all particles observed, all free parameters fixed

2012 – present no new particle detected after the Higgs boson
Still open questions: neutrino masses, baryogenesis, dark matter. . .

Evidences of New Physics
Direct observation: main paradigm
On-shell production and subsequent decay

Indirect search: complementary approach
Investigation of known processes at higher precision to unveil deviations

Accurate experimental results Small theoretical uncertainties

Higgs boson: good candidate

Yukawa coupling

Only spin-0 elementary particle in the SM

Still under investigation

Marco Bonetti (RWTH TTK) NLO QCD-EW gg → H SFB TRR 257 07.10.2020 3 / 12



Motivations

Particle physics after the Higgs boson

2012 direct detection of the Higgs boson
SM complete: all particles observed, all free parameters fixed

2012 – present no new particle detected after the Higgs boson
Still open questions: neutrino masses, baryogenesis, dark matter. . .

Evidences of New Physics
Direct observation: main paradigm
On-shell production and subsequent decay

Indirect search: complementary approach
Investigation of known processes at higher precision to unveil deviations

Accurate experimental results Small theoretical uncertainties

Higgs boson: good candidate

Yukawa coupling

Only spin-0 elementary particle in the SM

Still under investigation

Marco Bonetti (RWTH TTK) NLO QCD-EW gg → H SFB TRR 257 07.10.2020 3 / 12



Motivations

Particle physics after the Higgs boson

2012 direct detection of the Higgs boson
SM complete: all particles observed, all free parameters fixed

2012 – present no new particle detected after the Higgs boson
Still open questions: neutrino masses, baryogenesis, dark matter. . .

Evidences of New Physics
Direct observation: main paradigm
On-shell production and subsequent decay

Indirect search: complementary approach
Investigation of known processes at higher precision to unveil deviations

Accurate experimental results Small theoretical uncertainties

Higgs boson: good candidate

Yukawa coupling

Only spin-0 elementary particle in the SM

Still under investigation

Marco Bonetti (RWTH TTK) NLO QCD-EW gg → H SFB TRR 257 07.10.2020 3 / 12



Motivations

Particle physics after the Higgs boson

2012 direct detection of the Higgs boson
SM complete: all particles observed, all free parameters fixed

2012 – present no new particle detected after the Higgs boson
Still open questions: neutrino masses, baryogenesis, dark matter. . .

Evidences of New Physics
Direct observation: main paradigm
On-shell production and subsequent decay

Indirect search: complementary approach
Investigation of known processes at higher precision to unveil deviations

Accurate experimental results Small theoretical uncertainties

Higgs boson: good candidate

Yukawa coupling

Only spin-0 elementary particle in the SM

Still under investigation

Marco Bonetti (RWTH TTK) NLO QCD-EW gg → H SFB TRR 257 07.10.2020 3 / 12



Motivations

Higgs boson precision physics [1602.00695][1610.07922][1802.00833]

Higgs gluon fusion

LHC main H production channel: 90% σtot
gg→H at 13TeV

Dominated by QCD, known up to N3LO (uncertainty: ∼ 1%)

g

g

H

Sub-dominant contributions & uncertainties now important
Uncertainty: ∼ 1% each

Quark mass dependence Electroweak contributions PDF refinement
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FIG. 2: Scale variation of the gluon fusion cross-section at
all perturbative orders through N3LO.

pressions valid for all regions are known, is similarly sup-
prerssed. We therefore believe that the uncertainty of
our computation for the hadronic cross-section due to
the truncation of the threshold expansion is negligible
(less than 0.2%).

In Fig. 2 we present the hadronic gluon-fusion Higgs
production cross-section at N3LO as a function of a com-
mon renormalisation and factorisation scale µ = µr =
µf . We observe a significant reduction of the sensitiv-
ity of the cross-section to the scale µ. Inside a range

µ 2
⇥

mH

4 , mH

⇤
the cross-section at N3LO varies in the

interval [�2.7%, +0.3%] with respect to the cross-section
value at the central scale µ = mH

2 . For comparison, we
note that the corresponding scale variation at NNLO is
about ±9% [2, 3]. This improvement in the precision of
the Higgs cross-section is a major accomplishment due to
our calculation and will have a strong impact on future
measurements of Higgs-boson properties. Furthermore,
even though for the scale choice µ = mH

2 the N3LO cor-
rections change the cross-section by about +2.2%, this
correction is captured by the scale variation estimate for
the missing higher order e↵ects of the NNLO result at
that scale. We illustrate this point in Fig. 3, where we
present the hadronic cross-section as a function of the
hadronic center-of-mass energy

p
S at the scale µ = mH

2 .
We observe that the N3LO scale uncertainty band is in-
cluded within the NNLO band, indicating that the per-
turbative expansion of the hadronic cross-section is con-
vergent. However, we note that for a larger scale choice,
e.g., µ = mH , the convergence of the perturbative series
is slower than for µ = mH

2 .

In table I we quote the gluon fusion cross section
in e↵ective theory at N3LO for di↵erent LHC energies.
The perturbative uncertainty is determined by varying
the common renormalisation and factorisation scale in
the interval

⇥
mH

4 , mH

⇤
around mH

2 and in the interval⇥
mH

2 , 2mH

⇤
around mH .

�/pb 2 TeV 7 TeV 8 TeV 13 TeV 14 TeV

µ = mH
2

0.99+0.43%
�4.65% 15.31+0.31%

�3.08% 19.47+0.32%
�2.99% 44.31+0.31%

�2.64% 49.87+0.32%
�2.61%

µ = mH 0.94+4.87%
�7.35% 14.84+3.18%

�5.27% 18.90+3.08%
�5.02% 43.14+2.71%

�4.45% 48.57+2.68%
�4.24%

TABLE I: The gluon fusion cross-section in picobarn in the e↵ective theory for di↵erent collider energies in the interval
[mH

4
, mH ] around µ = mH

2
and in the interval [mH

2
, 2mH ] around µ = mH .

Given the substantial reduction of the scale uncertainty
at N3LO, the question naturally arises whether other
sources of theoretical uncertainty may contribute at a
similar level. In the remainder of this Letter we briefly
comment on this issue, leaving a more detailed quantita-
tive study for future work.

First, we note that given the small size of the N3LO
corrections compared to NNLO, we expect that an esti-
mate for the higher-order corrections at N4LO and be-
yond can be obtained from the scale variation uncer-
tainty. Alternatively, partial N4LO results can be ob-
tained by means of factorisation theorems for thresh-
old resummation. However, we expect that the insight
from resummation on the N4LO soft contributions is only

qualitative given the importance of next-to-soft, next-to-
next-to-soft and purely virtual contributions observed at
N3LO, as seen in Fig. 1.

Electroweak corrections to Higgs production have been
calculated through two loops in ref. [32], and estimated
at three loops in ref. [33]. They furnish a correction of
less than +5% to the inclusive cross-section. Thus, they
are not negligible at the level of accuracy indicated by
the scale variation at N3LO and need to be combined
with our result in the future. Mixed QCD-electroweak
or purely electroweak corrections of even higher order
are expected to contribute at the sub-percent level and
should be negligible.

Next, we have to comment on our assumption that the

Sub-dominant contributions & uncertainties now important
Uncertainty: ∼ 1% each

Quark mass dependence Electroweak contributions PDF refinement
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Motivations

QCD-Electroweak contributions [ph0404071][ph0407249][ph0610033]

Leading Order
Yukawa coupling αSαYt

top dominant

∼0.5% of σLO
QCD

Electroweak coupling αSα
2v

light quarks dominant

+5.3% of σLO
QCD

Next-to-Leading Order
Next order ⇒ NLO small Gluon fusion ⇒ NLO large

+1% of σNLO
QCD +5% of σNLO

QCD

Exact NLO computation required
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Amplitude

Construction of the amplitude

1 Feynman diagrams [Nog93]

Virtual NLO α2
S α

2 v

47 diagrams

Real NLO α
3/2
S α2 v

21 diagrams

2 Tensor structures [1707.06453]

3 Form factors
4 Master Integrals [1201.4330][1705.05610]
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Amplitude

Construction of the amplitude

1 Feynman diagrams [Nog93]
2 Tensor structures [1707.06453]

No axial terms: γ5-dependence drops summing over isospin doublets

gg → H

Mc1c2
λ1λ2

= δc1c2ελ1 (p1) · ελ2 (p2) [F2 + F3]

gg → Hg

Mc1c2c3
λ1λ2λ3

= f c1c2c3ελ1,µ (p1) ελ2,ν (p2) ε
∗
λ3,ρ (p3)

[gµνpρ2 F002 + gµρpν1 F010+

+gνρpµ3 F300 + pµ3 p
ν
1p

ρ
2 F312]

3 Form factors
4 Master Integrals [1201.4330][1705.05610]
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Amplitude

Construction of the amplitude

1 Feynman diagrams [Nog93]
2 Tensor structures [1707.06453]
3 Form factors

Diagrams contain either only W± or only Z

F ∝ 4 A (x,mW ) +
2

cos4 θW

[
5
4
− 7

3
sin2 θW +

22
9

sin4 θW

]
A (x,mZ )

W± couples to {u, d , c , s}
Z couples to {u, d , s, c , b}

4 Master Integrals [1201.4330][1705.05610]
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Amplitude

Construction of the amplitude

1 Feynman diagrams [Nog93]
2 Tensor structures [1707.06453]
3 Form factors
4 Master Integrals [1201.4330][1705.05610]

Virtual NLO: 95 3-loop MIs

· · ·

Real NLO: 61 2-loop MIs
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LO & Virtual NLO

Evaluation of 3-point Master Integrals
1 Differential equations [Kot91][ph9306240][th9711188][th9912329]

Differentiate the MIs w.r.t. masses or kinematics



∂

∂M2 =

∂

∂M2 = +

Apply IBPs to the r.h.s.

= =
−1 + ε

M2 (4M2 − p2)
+

1− 2ε
4M2 − p2

=
1− ε
M2

Homogeneous system of differential equations




∂

∂M2 =
1− ε
M2

∂

∂M2 =
−2 + 2ε

M2 (4M2 − p2)
+

2− 4ε
4M2 − p2

2 Canonical fuchsian form [1012.6032][1304.1806][1412.2296]
3 Solution: Dyson series in ε
4 Boundary conditions [Smi02]
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M2 (4M2 − p2)
+

2− 4ε
4M2 − p2

2 Canonical fuchsian form [1012.6032][1304.1806][1412.2296]
3 Solution: Dyson series in ε
4 Boundary conditions [Smi02]
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LO & Virtual NLO

Evaluation of 3-point Master Integrals
1 Differential equations [Kot91][ph9306240][th9711188][th9912329]
2 Canonical fuchsian form [1012.6032][1304.1806][1412.2296]

Highly non-trivial but very useful
d
dy

F(y , ε) = ε
∑

c

Bc
1

y − ac
F(y , ε)

s 0 m2 4m2 [∞ ]

y :=

√
1−4M2/s−1√
1−4M2/s+1

+1 e±iπ/3 −1 [ 0 ]

3 Solution: Dyson series in ε
4 Boundary conditions [Smi02]
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F(y , ε) = F(0)
0

∫

+ ε2
[∫

y
B(ξ1) dξ1 F(0)

0 + F(1)
0

]

+ ε2
[∫

y
B(ξ1)

∫

ξ1

B(ξ2) dξ2dξ1 F(0)
0 +

∫

y
B(ξ2) dξ2F

(1)
0 + F(2)

0

]

+ O
(
ε3
) ∫

Goncharov Polylogarithms (GPLs)

G (acn , acn−1 , . . . , ac1 ; y) =

∫ y

0

1
ξ − acn

G (acn−1 , . . . , ac1 ; ξ) dξ

4 Boundary conditions [Smi02]

Marco Bonetti (RWTH TTK) NLO QCD-EW gg → H SFB TRR 257 07.10.2020 7 / 12



LO & Virtual NLO

Evaluation of 3-point Master Integrals
1 Differential equations [Kot91][ph9306240][th9711188][th9912329]
2 Canonical fuchsian form [1012.6032][1304.1806][1412.2296]
3 Solution: Dyson series in ε

F(y , ε) = F(0)
0

∫

+ ε2
[∫
G(ac1 ; y) F(0)

0 + F(1)
0

]

+ ε2
[∫ ∫

G(ac2 , ac1 ; y) F(0)
0 +

∫
G(ac2 ; y) F(1)

0 + F(2)
0

]

+ O
(
ε3
)

Goncharov Polylogarithms (GPLs)

G (acn , acn−1 , . . . , ac1 ; y) =

∫ y

0

1
ξ − acn

G (acn−1 , . . . , ac1 ; ξ) dξ

4 Boundary conditions [Smi02]

Marco Bonetti (RWTH TTK) NLO QCD-EW gg → H SFB TRR 257 07.10.2020 7 / 12



LO & Virtual NLO

Evaluation of 3-point Master Integrals
1 Differential equations [Kot91][ph9306240][th9711188][th9912329]
2 Canonical fuchsian form [1012.6032][1304.1806][1412.2296]
3 Solution: Dyson series in ε
4 Boundary conditions [Smi02]

lim
M2�s
y→1

[ F(y , ε)− L(y , ε) ] = 0

Large-mass expansion

L

[ ]
=





× +

+ + s
2(1 + ε)

2− ε + O
(

(−s)2

(m2)4

)
F(n)

0 0 1 2 3 4 5 6

Values 1 — π2 ζ(3) π4 π2ζ(3) π6

ζ(5) ζ2(3)
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Real NLO

Real emissions

Soft gluon approximation [ph0102227][1209.0673]

In gg → H PDFs suppress extra gluons with large momentum

Eikonal approximation (Eg → 0)

∣∣∣∣∣ EW

∣∣∣∣∣

2

⇒
∣∣∣∣∣

∣∣∣∣∣

2

⇒ 4παSNC
2 p1 · p2

p1 · p4 p2 · p4

∣∣∣∣∣ EW

∣∣∣∣∣

2

σQCD
LO = 20.6 pb σQCD-EW

LO = 21.7 pb ⇒ +5.3% at LO

σQCD
NLO = 32.66 pb σQCD-EW

NLO = 34.41 pb ⇒ +5.35% at NLO

Beyond soft gluon: differential equations

3-scale problem: boundary conditions not straightforward

Square roots: non-rationalizable at once, change of variables on-the-fly

Cumbersome results: last two orders of the non-planar top sector missing
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Real NLO

Direct integration [1403.3385]

Feynman parameters

I (a1, . . . , a7) ∝
[

7∏

k=1

∫ +∞

0
xak−1
k dxk

]
δ (1− x)

U
∑

ai+3D/2F
∑

ai−D

Direct integration requires
U & F linearly reducible [0804.1660][0910.0114]

There exists an order of integration over xk for which the result is a l.c. of GPLs

The Master Integrals are finite in ε [th960618][0911.0252]
UV finiteness: negative SDD
IR finiteness: translate integrals in D = 6

ID+2 (a1, . . . , a7) =
16

s t u(D − 4)(D − 3)

∫
d̃Dk1d̃Dk2

G (k1, k2, p1, p2, p3)

Da1
1 . . .Da7

7

Gram determinant G : cures soft and collinear divergences

Master Integrals in quasi-finite basis computed using HyperInt.
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Real NLO

gg → Hg amplitude

Rich alphabet: 49 letters, 4 square roots

R0 =
√

m2
h(m2

h − 4m2
V ) / (−m2

h) R1 =
√

1− 4m2
V /(t + u)

R2 =
√

R2
0 − 4m2

V su/t / (−m2
h) R3 =

√
R2

0 − 4m2
V st/u / (−m2

h)

R2 & R3 not compatible: never in the same hyperlogarithm

Helicity amplitudes: weight drop

Ω+++ max weight: 3 Ω++− max weight: 4

Same as in gg → H: max weight 3 at 2 loops, max weight 5 at 3 loops

Final form of the amplitude

Ω+++ 3 log, Li2, Li3: fast, stable expressions both in Euclidean and physical regions

Ω++− 3 log, Li2, Li3,G4 (to be done: G4 → Li4, Li2,2)
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Conclusions & Outlook

Conclusions & Outlook

QCD-EW corrections to Higgs production: important for precision physics

Analytic results for NLO QCD light-quark corrections to gg → H(g)

The road ahead
qg → Hq QCD-EW with light quarks

Computation of σPP→H+j QCD-EW with light quarks α2 αn
S

Very long run: σPP→H+j QCD-EW top + light quarks
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Thank you for your attention
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