NLO mixed QCD-electroweak corrections to Higgs boson gluon fusion

Marco Bonetti

Annual meeting of the SFB TRR 257

In collaboration with K. Melnikov, E. Panzer, L. Tancredi, V. A. Smirnov

Marco Bonetti (RWTH TTK)

NLO QCD-EW $gg \rightarrow H$

SFB TRR 257 07.10.2020

1/12

Topics

3 LO & Virtual NLO

🕘 Real NLO

5 Conclusions & Outlook

Marco Bonetti (RWTH TTK)

2012 direct detection of the Higgs boson

• SM complete: all particles observed, all free parameters fixed

 2012
 direct detection of the Higgs boson

 • SM complete: all particles observed, all free parameters fixed

 2012 - present
 no new particle detected after the Higgs boson

 • Still open questions:
 neutrino masses, baryogenesis, dark matter...

- 2012 direct detection of the Higgs boson
- $\bullet~$ SM complete: all particles observed, all free parameters fixed
- 2012-present no new particle detected after the Higgs boson
- Still open questions: neutrino masses, baryogenesis, dark matter...

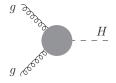
Evidences of New Physics

- Direct observation: main paradigm On-shell production and subsequent decay
- Indirect search: complementary approach Investigation of known processes at higher precision to unveil deviations
 - Accurate experimental results
 Small theoretical uncertainties

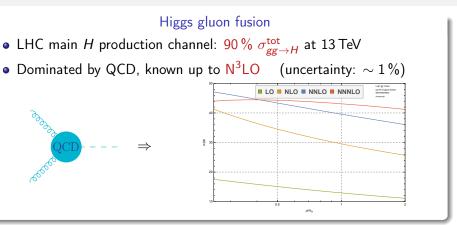
- 2012 direct detection of the Higgs boson
- $\bullet~$ SM complete: all particles observed, all free parameters fixed
- 2012-present no new particle detected after the Higgs boson
- Still open questions: neutrino masses, baryogenesis, dark matter...

Evidences of New Physics

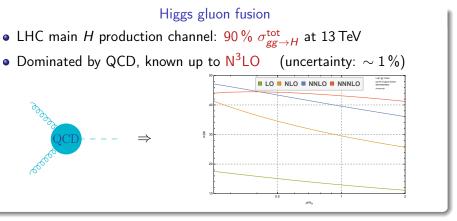
- Direct observation: main paradigm On-shell production and subsequent decay
- Indirect search: complementary approach Investigation of known processes at higher precision to unveil deviations
 - Accurate experimental results
 Small theoretical uncertainties


Higgs boson: good candidate

- Yukawa coupling
- Only spin-0 elementary particle in the SM
- Still under investigation


Higgs boson precision physics [1602.00695] [1610.07922] [1802.00833]

Higgs gluon fusion

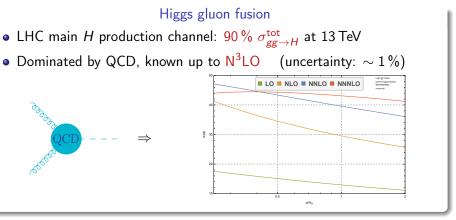

• LHC main H production channel: 90 % $\sigma_{gg \rightarrow H}^{\text{tot}}$ at 13 TeV

Higgs boson precision physics [1602.00695] [1610.07922] [1802.00833]

Higgs boson precision physics [1602.00695] [1610.07922] [1802.00833]

Sub-dominant contributions & uncertainties now important

Uncertainty: $\sim 1\,\%$ each


Quark mass dependence Electroweak contributions PDF refinement

Marco Bonetti (RWTH TTK)

NLO QCD-EW $gg \rightarrow H$

SFB TRR 257 07.10.2020 4 / 12

Higgs boson precision physics [1602.00695] [1610.07922] [1802.00833]

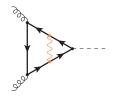
Sub-dominant contributions & uncertainties now important

Uncertainty: $\sim 1\%$ each

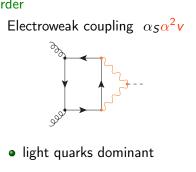
Quark mass dependence Electroweak contributions PDF refinement

Marco Bonetti (RWTH TTK)

NLO QCD-EW $gg \rightarrow H$


SFB TRR 257 07.10.2020

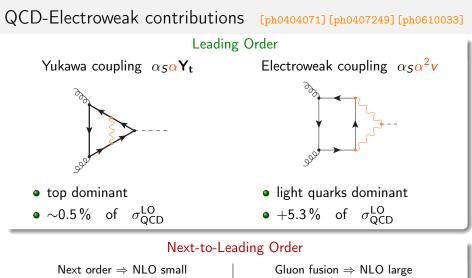
4/12


QCD-Electroweak contributions [ph0404071] [ph0407249] [ph0610033]

Leading Order

Yukawa coupling $\alpha_{S} \alpha \mathbf{Y}_{t}$

• top dominant


QCD-Electroweak contributions [ph0404071] [ph0407249] [ph0610033] Leading Order Leading order Yukawa coupling $\alpha_{S} \alpha^{Y} t$ Electroweak coupling $\alpha_{S} \alpha^{2} v$ Image: Control of the second se

- 999
- top dominant
- $\bullet \sim 0.5\%$ of $\sigma_{
 m QCD}^{
 m LO}$

light quarks dominant

• +5.3% of
$$\sigma_{\rm QCD}^{\rm LO}$$

Marco Bonetti (RWTH TTK)

 $+5\,\%$ of $\sigma_{ t QCD}^{ t NLO}$

+1% of $\sigma_{\rm QCD}^{\rm NLO}$

Workstons QCD-Electroweak contributions [ph0404071] [ph0407249] [ph0610033] Leading Order Yukawa coupling $\alpha_{S} \alpha^{Y} t$ Electroweak coupling $\alpha_{S} \alpha^{2} v$ $\overline{\delta}_{0}$ $\overline{\delta}_{0}$

- top dominant
- $\bullet \sim 0.5 \,\%$ of $\sigma_{
 m QCD}^{
 m LO}$

light quarks dominant

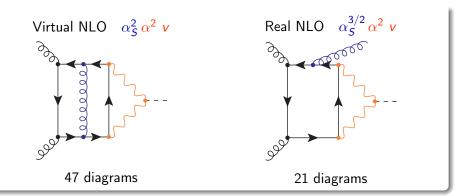
• +5.3 % of
$$\sigma_{ extsf{QCD}}^{ extsf{LO}}$$

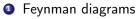
Next-to-Leading Order

Next order \Rightarrow NLO small +1% of $\sigma_{\text{OCD}}^{\text{NLO}}$ Gluon fusion \Rightarrow NLO large

+5 % of
$$\sigma_{\rm QCD}^{\rm NLO}$$

Exact NLO computation required


Marco Bonetti (RWTH TTK)


NLO QCD-EW $gg \rightarrow H$

SFB TRR 257 07.10.2020

Feynman diagrams

[Nog93]

2 Tensor structures

No axial terms: γ_5 -dependence drops summing over isospin doublets

 $gg \rightarrow H$

$$\mathcal{M}_{\lambda_{1}\lambda_{2}}^{c_{1}c_{2}} = \delta^{c_{1}c_{2}}\epsilon_{\lambda_{1}}\left(\mathbf{p}_{1}\right)\cdot\epsilon_{\lambda_{2}}\left(\mathbf{p}_{2}\right)\left[\mathcal{F}_{2}+\mathcal{F}_{3}\right]$$

[Nog93]

[1707.06453]

- Feynman diagrams
- 2 Tensor structures

No axial terms: γ_5 -dependence drops summing over isospin doublets

 $gg \rightarrow H$

$$\mathcal{M}_{\lambda_{1}\lambda_{2}}^{c_{1}c_{2}} = \delta^{c_{1}c_{2}}\epsilon_{\lambda_{1}}\left(\mathbf{p}_{1}\right)\cdot\epsilon_{\lambda_{2}}\left(\mathbf{p}_{2}\right)\left[\mathcal{F}_{2}+\mathcal{F}_{3}\right]$$

gg
ightarrow Hg

$$\mathcal{M}_{\lambda_{1}\lambda_{2}\lambda_{3}}^{c_{1}c_{2}c_{3}} = f^{c_{1}c_{2}c_{3}}\epsilon_{\lambda_{1},\mu}(\mathbf{p}_{1})\epsilon_{\lambda_{2},\nu}(\mathbf{p}_{2})\epsilon_{\lambda_{3},\rho}^{*}(\mathbf{p}_{3})$$

$$[g^{\mu\nu}p_{2}^{\rho}\mathcal{F}_{002} + g^{\mu\rho}p_{1}^{\nu}\mathcal{F}_{010} +$$

$$+g^{\nu\rho}p_{3}^{\mu}\mathcal{F}_{300} + p_{3}^{\mu}p_{1}^{\nu}p_{2}^{\rho}\mathcal{F}_{312}]$$

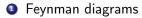
Marco Bonetti (RWTH TTK)

[Nog93]

[1707.06453]

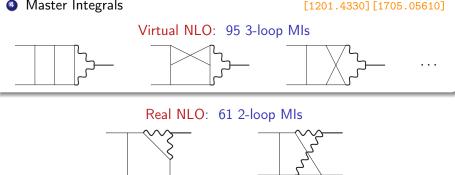
- Feynman diagrams
- 2 Tensor structures
- Form factors

Diagrams contain either only W^{\pm} or only Z


[Nog93] [1707.06453]

$$\mathcal{F} \propto 4 A(\mathbf{x}, m_W) + \frac{2}{\cos^4 \theta_W} \left[\frac{5}{4} - \frac{7}{3} \sin^2 \theta_W + \frac{22}{9} \sin^4 \theta_W \right] A(\mathbf{x}, m_Z)$$

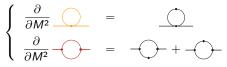
•
$$W^{\pm}$$
 couples to $\{u, d, c, s\}$


• *Z* couples to {*u*, *d*, *s*, *c*, *b*}

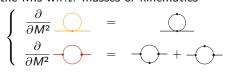
Marco Bonetti (RWTH TTK)

- Tensor structures 2
- Is Form factors
- Master Integrals

[Nog93] [1707.06453]

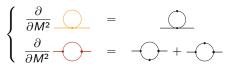


Differential equations


[Kot91] [ph9306240] [th9711188] [th9912329]

Differential equations [Kot91] [ph9306240] [th9711188] [th9912329]

Differentiate the MIs w.r.t. masses or kinematics


- Image: Differential equations
 [Kot91] [ph9306240] [th9711188] [th9912329]
 - Differentiate the MIs w.r.t. masses or kinematics

• Apply IBPs to the r.h.s.

$$- \bigcirc - = - \bigcirc - = \frac{-1 + \varepsilon}{M^2 (4M^2 - p^2)} \bigcirc + \frac{1 - 2\varepsilon}{4M^2 - p^2} - \bigcirc \\ \bigcirc = \frac{1 - \varepsilon}{M^2} \bigcirc$$

- Image: Differential equations
 [Kot91] [ph9306240] [th9711188] [th9912329]
 - Differentiate the MIs w.r.t. masses or kinematics

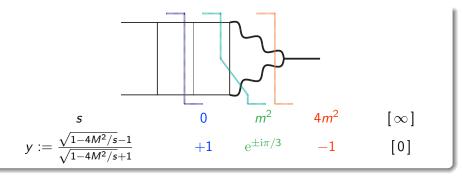
• Apply IBPs to the r.h.s.

$$- \bigcirc - = - \bigcirc - = \frac{-1 + \varepsilon}{M^2 (4M^2 - p^2)} \bigcirc + \frac{1 - 2\varepsilon}{4M^2 - p^2} - \bigcirc + \frac{1 - 2\varepsilon}{4M^2 - p^2} - \bigcirc + \frac{1 - \varepsilon}{4M^2 - p^2} - \bigcirc + 0 - \odot + 0 - \odot$$

Homogeneous system of differential equations

$$\begin{cases} \frac{\partial}{\partial M^2} \bigcirc = \frac{1-\varepsilon}{M^2} \bigcirc \\ \frac{\partial}{\partial M^2} \bigcirc = \frac{-2+2\varepsilon}{M^2(4M^2-p^2)} \bigcirc + \frac{2-4\varepsilon}{4M^2-p^2} \bigcirc \\ \end{cases}$$

Marco Bonetti (RWTH TTK)

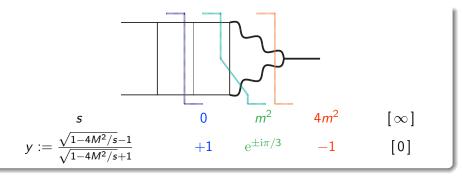

NLO QCD-EW $gg \rightarrow H$ SFB TRR 257 07.10.2020 7 / 12

- Differential equations
- 2 Canonical fuchsian form

[Kot91] [ph9306240] [th9711188] [th9912329] [1012.6032] [1304.1806] [1412.2296]

Highly non-trivial but very useful

$$\frac{\mathrm{d}}{\mathrm{d}y} \,\mathsf{F}(y,\varepsilon) = \varepsilon \, \sum_{c} \mathcal{B}_{c} \, \frac{1}{y - \mathsf{a}_{c}} \,\mathsf{F}(y,\varepsilon)$$


Marco Bonetti (RWTH TTK)

- Differential equations
- 2 Canonical fuchsian form

[Kot91] [ph9306240] [th9711188] [th9912329] [1012.6032] [1304.1806] [1412.2296]

Highly non-trivial but very useful

$$\frac{\mathrm{d}}{\mathrm{d}y} \,\mathsf{F}(y,\varepsilon) = \varepsilon \, \sum_{c} \mathcal{B}_{c} \, \frac{1}{y - \mathsf{a}_{c}} \,\mathsf{F}(y,\varepsilon)$$

Marco Bonetti (RWTH TTK)

- Differential equations
- 2 Canonical fuchsian form
- $\textbf{③ Solution: Dyson series in } \varepsilon$

[Kot91] [ph9306240] [th9711188] [th9912329] [1012.6032] [1304.1806] [1412.2296]

$$\begin{aligned} \mathbf{F}(y,\varepsilon) &= \mathbf{F}_{0}^{(0)} \\ &+ \varepsilon \left[\int_{y} \mathcal{B}(\xi_{1}) \, \mathrm{d}\xi_{1} \, \mathbf{F}_{0}^{(0)} + \mathbf{F}_{0}^{(1)} \right] \\ &+ \varepsilon^{2} \left[\int_{y} \mathcal{B}(\xi_{1}) \int_{\xi_{1}} \mathcal{B}(\xi_{2}) \, \mathrm{d}\xi_{2} \mathrm{d}\xi_{1} \, \mathbf{F}_{0}^{(0)} + \int_{y} \mathcal{B}(\xi_{2}) \, \mathrm{d}\xi_{2} \mathbf{F}_{0}^{(1)} + \mathbf{F}_{0}^{(2)} \right] \\ &+ \mathcal{O}\left(\varepsilon^{3}\right) \end{aligned}$$

- Differential equations
- 2 Canonical fuchsian form
- $\textbf{③ Solution: Dyson series in } \varepsilon$

[Kot91] [ph9306240] [th9711188] [th9912329] [1012.6032] [1304.1806] [1412.2296]

Marco Bonetti (RWTH TTK)

NLO QCD-EW $gg \rightarrow H$ SFB TRR 257 07.10.2020 7 / 12

- Differential equations
- 2 Canonical fuchsian form
- **③** Solution: Dyson series in ε
- Boundary conditions

[Kot91] [ph9306240] [th9711188] [th9912329] [1012.6032] [1304.1806] [1412.2296]

[Smi02]

$$\lim_{\substack{M^2 \gg s \\ y \to 1}} [\mathbf{F}(y, \varepsilon) - \mathbf{L}(y, \varepsilon)] = 0$$

- Differential equations
- 2 Canonical fuchsian form
- Solution: Dyson series in ε
- Boundary conditions

[Kot91] [ph9306240] [th9711188] [th9912329] [1012.6032] [1304.1806] [1412.2296]

SFB TRR 257

07.10.2020

7/12

[Smi02]

$$\lim_{\substack{M^2 \gg s \\ y \to 1}} \left[\mathbf{F}(y,\varepsilon) - \mathbf{L}(y,\varepsilon) \right] = 0$$

$$\text{Large-mass expansion}$$

$$\mathbf{L} \left[\underbrace{\searrow -}_{-} \right] = \begin{cases} \underbrace{\swarrow -}_{-} \times \underbrace{\bigcirc}_{-} + \\ + \underbrace{\bigcirc}_{-} + s \frac{2(1+\varepsilon)}{2-\varepsilon} \underbrace{\bigcirc}_{-} + \mathcal{O}\left(\frac{(-s)^2}{(m^2)^4}\right) \end{cases}$$

$$\frac{\mathbf{F}_{0}^{(n)} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6}{\text{Values} \quad 1 \quad - \quad \pi^2 \quad \zeta(3) \quad \pi^4 \quad \frac{\pi^2 \zeta(3)}{\zeta(5)} \quad \frac{\pi^6}{\zeta^2(3)}$$

NLO QCD-EW $gg \rightarrow H$

Marco Bonetti (RWTH TTK)

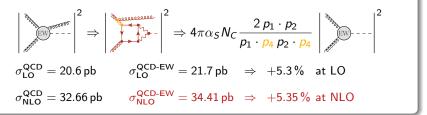
Real emissions

Real emissions

• Soft gluon approximation

[ph0102227] [1209.0673]

- In $gg \rightarrow H$ PDFs suppress extra gluons with large momentum
- Eikonal approximation $(E_g \rightarrow 0)$

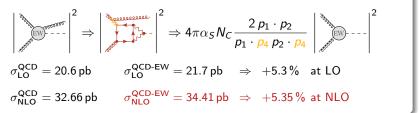

$$\left\| \sum_{\substack{n=1\\ n \neq n}}^{n} \sum_{\substack{n=1\\ n \neq n}}^{n} \right\|^{2} \Rightarrow \left\| \sum_{\substack{n=1\\ n \neq n}}^{n} \sum_{\substack{n=1\\ n \neq n}}^{n} \right\|^{2} \Rightarrow 4\pi\alpha_{S}N_{C}\frac{2p_{1} \cdot p_{2}}{p_{1} \cdot p_{4}p_{2} \cdot p_{4}} \right\|_{p}$$

Real emissions

• Soft gluon approximation

[ph0102227] [1209.0673]

- In $gg \rightarrow H$ PDFs suppress extra gluons with large momentum
- Eikonal approximation $(E_g \rightarrow 0)$

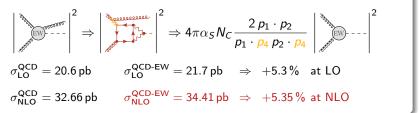


Real emissions

• Soft gluon approximation

[ph0102227] [1209.0673]

- In $gg \rightarrow H$ PDFs suppress extra gluons with large momentum
- Eikonal approximation $(E_g \rightarrow 0)$


- Beyond soft gluon: differential equations
- 3-scale problem: boundary conditions not straightforward
- Square roots: non-rationalizable at once, change of variables on-the-fly

Real emissions

• Soft gluon approximation

[ph0102227] [1209.0673]

- In $gg \rightarrow H$ PDFs suppress extra gluons with large momentum
- Eikonal approximation $(E_g \rightarrow 0)$

- Beyond soft gluon: differential equations
- 3-scale problem: boundary conditions not straightforward
- Square roots: non-rationalizable at once, change of variables on-the-fly
- Cumbersome results: last two orders of the non-planar top sector missing

Marco Bonetti (RWTH TTK)

NLO QCD-EW $gg \rightarrow H$

Feynman parameters

$$\mathcal{I}(\mathbf{a}_1,\ldots,\mathbf{a}_7) \propto \left[\prod_{k=1}^7 \int_0^{+\infty} x_k^{\mathbf{a}_k-1} \, \mathrm{d}x_k\right] \frac{\delta\left(1-\overline{x}\right)}{\mathcal{U}^{\sum \mathbf{a}_i+3D/2} \mathcal{F}^{\sum \mathbf{a}_i-D}}$$

Feynman parameters

$$\mathcal{I}(\mathbf{a}_1,\ldots,\mathbf{a}_7) \propto \left[\prod_{k=1}^7 \int_0^{+\infty} x_k^{\mathbf{a}_k-1} \, \mathrm{d}x_k\right] \frac{\delta\left(1-\overline{x}\right)}{\mathcal{U}^{\sum \mathbf{a}_i+3D/2} \mathcal{F}^{\sum \mathbf{a}_i-D}}$$

Direct integration requires

• \mathcal{U} & \mathcal{F} linearly reducible

[0804.1660] [0910.0114]

There exists an order of integration over x_k for which the result is a l.c. of GPLs

Feynman parameters

$$\mathcal{I}(\mathbf{a}_1,\ldots,\mathbf{a}_7) \propto \left[\prod_{k=1}^7 \int_0^{+\infty} x_k^{\mathbf{a}_k-1} \, \mathrm{d}x_k\right] \frac{\delta\left(1-\overline{x}\right)}{\mathcal{U}^{\sum \mathbf{a}_i+3D/2} \mathcal{F}^{\sum \mathbf{a}_i-D}}$$

Direct integration requires

• \mathcal{U} & \mathcal{F} linearly reducible

[0804.1660] [0910.0114]

[th960618][0911.0252]

There exists an order of integration over x_k for which the result is a l.c. of GPLs

- The Master Integrals are finite in ϵ
 - UV finiteness: negative SDD
 - IR finiteness: translate integrals in D = 6

$$\mathcal{I}^{D+2}(a_1,\ldots,a_7) = \frac{16}{s \, t \, u(D-4)(D-3)} \int \tilde{d}^D k_1 \tilde{d}^D k_2 \frac{G(k_1,k_2,p_1,p_2,p_3)}{\mathcal{D}_1^{a_1} \ldots \mathcal{D}_7^{a_7}}$$

Gram determinant G: cures soft and collinear divergences

Feynman parameters

$$\mathcal{I}(\mathbf{a}_1,\ldots,\mathbf{a}_7) \propto \left[\prod_{k=1}^7 \int_0^{+\infty} x_k^{\mathbf{a}_k-1} \, \mathrm{d}x_k\right] \frac{\delta\left(1-\overline{x}\right)}{\mathcal{U}^{\sum \mathbf{a}_i+3D/2} \mathcal{F}^{\sum \mathbf{a}_i-D}}$$

Direct integration requires

• \mathcal{U} & \mathcal{F} linearly reducible

[0804.1660] [0910.0114]

[th960618][0911.0252]

There exists an order of integration over x_k for which the result is a l.c. of GPLs

- The Master Integrals are finite in ϵ
 - UV finiteness: negative SDD
 - IR finiteness: translate integrals in D = 6

$$\mathcal{I}^{D+2}(a_1,\ldots,a_7) = \frac{16}{s \, t \, u(D-4)(D-3)} \int \tilde{d}^D k_1 \tilde{d}^D k_2 \frac{G(k_1,k_2,p_1,p_2,p_3)}{\mathcal{D}_1^{a_1} \ldots \mathcal{D}_7^{a_7}}$$

Gram determinant G: cures soft and collinear divergences

Master Integrals in quasi-finite basis computed using HyperInt.

Marco Bonetti (RWTH TTK)

NLO QCD-EW $gg \rightarrow H$

SFB TRR 257 07.10.2020 9/12

gg ightarrow Hg amplitude

• Rich alphabet: 49 letters, 4 square roots

$$\begin{aligned} R_0 &= \sqrt{m_h^2 (m_h^2 - 4m_V^2)} / (-m_h^2) & R_1 &= \sqrt{1 - 4m_V^2 / (t+u)} \\ R_2 &= \sqrt{R_0^2 - 4m_V^2 s u / t} / (-m_h^2) & R_3 &= \sqrt{R_0^2 - 4m_V^2 s t / u} / (-m_h^2) \end{aligned}$$

 $R_2 \& R_3$ not *compatible*: never in the same hyperlogarithm

$gg \rightarrow Hg$ amplitude

• Rich alphabet: 49 letters, 4 square roots

$$\begin{aligned} R_0 &= \sqrt{m_h^2 (m_h^2 - 4m_V^2)} / (-m_h^2) & R_1 &= \sqrt{1 - 4m_V^2 / (t + u)} \\ R_2 &= \sqrt{R_0^2 - 4m_V^2 s u / t} / (-m_h^2) & R_3 &= \sqrt{R_0^2 - 4m_V^2 s t / u} / (-m_h^2) \end{aligned}$$

 $R_2 \& R_3$ not *compatible*: never in the same hyperlogarithm

• Helicity amplitudes: weight drop

 Ω_{+++} max weight: 3 Ω_{++-} max weight: 4

Same as in $gg \rightarrow H$: max weight 3 at 2 loops, max weight 5 at 3 loops

$gg \rightarrow Hg$ amplitude

• Rich alphabet: 49 letters, 4 square roots

$$\begin{aligned} R_0 &= \sqrt{m_h^2 (m_h^2 - 4m_V^2)} / (-m_h^2) & R_1 &= \sqrt{1 - 4m_V^2 / (t+u)} \\ R_2 &= \sqrt{R_0^2 - 4m_V^2 s u / t} / (-m_h^2) & R_3 &= \sqrt{R_0^2 - 4m_V^2 s t / u} / (-m_h^2) \end{aligned}$$

 $R_2 \& R_3$ not *compatible*: never in the same hyperlogarithm

• Helicity amplitudes: weight drop

 Ω_{+++} max weight: 3 Ω_{++-} max weight: 4

Same as in $gg \rightarrow H$: max weight 3 at 2 loops, max weight 5 at 3 loops

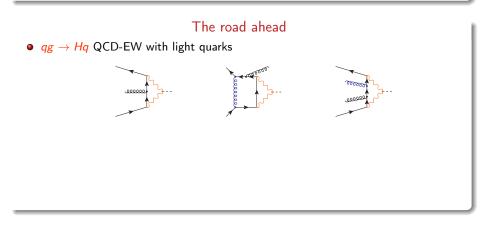
- Final form of the amplitude
- $\Omega_{+++} \ni \log, Li_2, Li_3$: fast, stable expressions both in Euclidean and physical regions
- $\Omega_{++-} \ni log, Li_2, Li_3, G_4$ (to be done: $G_4 \rightarrow Li_4, Li_{2,2}$)

Marco Bonetti (RWTH TTK)

NLO QCD-EW $gg \rightarrow H$

SFB TRR 257 07.10.2020

10/12

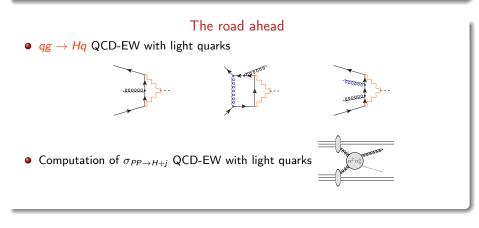

QCD-EW corrections to Higgs production: important for precision physics

QCD-EW corrections to Higgs production: important for precision physics

Analytic results for NLO QCD light-quark corrections to $gg \rightarrow H(g)$

QCD-EW corrections to Higgs production: important for precision physics

Analytic results for NLO QCD light-quark corrections to $gg \rightarrow H(g)$

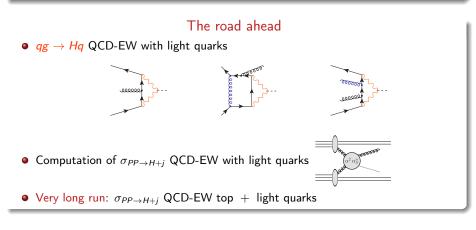


Marco Bonetti (RWTH TTK)

NLO QCD-EW $gg \rightarrow H$ SFB TRR 257 07.10.2020 11/12

QCD-EW corrections to Higgs production: important for precision physics

Analytic results for NLO QCD light-quark corrections to $gg \rightarrow H(g)$



Marco Bonetti (RWTH TTK)

NLO QCD-EW $gg \rightarrow H$ SFB TRR 257 07.10.2020 11/12

QCD-EW corrections to Higgs production: important for precision physics

Analytic results for NLO QCD light-quark corrections to $gg \rightarrow H(g)$

Marco Bonetti (RWTH TTK)

NLO QCD-EW $gg \rightarrow H$ SFB TRR 257 07.10.2020 11/12

Thank you for your attention

Marco Bonetti (RWTH TTK)

NLO QCD-EW $gg \rightarrow H$ SFB TRR 257 07.10.2020 12/12